A Guide to the World’s Most Extensible,
Customizable Editor

Debra Cameron, James Elliott,
C)’RE"_I_Y® Marc Loy, Eric Raymond & Bill Rosenblatt

Unix Programming

O’REILLY"
Learning GNU Emacs

GNU Emacs is a powerful editor and much more. It's an IDE, an authoring system, a file

organizer, an operating system interface, and a calendar all rolled into one. Learning
GNU Emacs provides a step-by-step approach to mastering this functionally rich editing
environment.

This edition has been completely revised and expanded to meet the evolving needs of Emacs
users, from beginner to advanced. Learning GNU Emacs includes updated support for C++, Lisp,

Perl, SQL, and Java language modes, including the Java Development Environment for Emacs (JDEE).

Learning GNU Emacs shows you how to customize Emacs interactively through a feature called
Custom, as well as through tweaking your startup file. This book helps you tailor Emacs to both
vour data and your work flow. You'll learn how to use syntax highlighting, how to edit columns of
data, how quick macros eliminate repetitive work, how to manage large projects using version
control, Ediff, and etags. and how to organize files and directories. You'll see why Emacs should be
your editor of choice and how it can increase your productivity.

Learning GNU Emacs covers Emacs on all major operating systems, pointing out platform-specific
differences throughout the book. It also includes a new chapter on running the latest version of
Emacs on Linux, Windows, and Mac OS X.

Learning GNU Emacs provides:

e A tutorial approach to learning Emacs

e Tables of commands and a tear-out card for easy reference

e Details on coding support for C/C++, Lisp, Java, and Perl

e Information on HTML and XML authoring

e Directions for customizing Emacs through Custom and .emacs

e An introduction to Lisp programming

e Specifics on using version control with CVS, RCS, SCCS, and Subversion

Most importantly, this book makes learning Emacs simple. Whether you're an experienced Emacs

hacker or have never tried Emacs, you'll find a wealth of detailed, up-to-date information on the
most powerful editor available today.

www.oreilly.com
US $39.95 CAN $57.95
ISBN: 978-0-596-00648-8 =
53995 Safari inciudes
AL AVLE v sooxs onume FREE 45-Day
91780596'006488 Online Edition

Learning GNU Emacs

Other Resources from O'Reilly

Related titles

oreilly.com

e
(2

i g" ?’REILLY
HDUENET WORK

Conferences

O’REILLY NE:FWORK
Safari
Bookshelf.

Unix in a Nutshell sed and awk
Learning the vi Editor Essential CVS

GNU Emacs Pocket Reference Version Control with
Subversion

oreilly.com is more than a complete catalog of O’Reilly books.
You’ll also find links to news, events, articles, weblogs, sample
chapters, and code examples.

oreillynet.com is the essential portal for developers interested in
open and emerging technologies, including new platforms, pro-
gramming languages, and operating systems.

O’Reilly brings diverse innovators together to nurture the ideas
that spark revolutionary industries. We specialize in document-
ing the latest tools and systems, translating the innovator’s
knowledge into useful skills for those in the trenches. Visit con-
ferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today with a free trial.

THIRD EDITION

Learning GNU Emacs

Debra Cameron, James Elliott,
Marc Loy, Eric Raymond, and Bill Rosenblatt

O’REILLY"

Beijing - Cambridge - Farnham - Koln - Paris - Sebastopol - Taipei - Tokyo

Learning GNU Emacs, Third Edition
by Debra Cameron, James Elliott, Marc Loy, Eric Raymond, and Bill Rosenblatt

Copyright © 2005 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our corporate/insti-
tutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Debra Cameron and Mike Loukides
Production Editor: Jamie Peppard
Cover Designer: Edie Freedman

Interior Designer: Melanie Wang

Printing History:
October 1991: First Edition.
April 1992: Minor corrections.
September 1996: Second Edition.
December 2004: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning GNU Emacs, the image of the gnu, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover,
‘Eﬂphé This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 0-596-00648-9
ISBN13: 978-0-596-00648-8

(M] [1/08]

Table of Contents

Preface ix
1. EmacsBasics 1
Introducing Emacs! 1
Understanding Files and Buffers 3

A Word About Modes 3
Starting Emacs 5
About the Emacs Display 6
Emacs Commands 10
Opening a File 11
Saving Files 15
Leaving Emacs 15
Getting Help 16
Summary 18

2. Editing 20
Moving the Cursor 22
Deleting Text 27
Marking Text to Delete, Move, or Copy 32
Emacs and the Clipboard 37
Editing Tricks and Shortcuts 39
Canceling Commands and Undoing Changes 41
Making Emacs Work the Way You Want 45

3. SearchandReplace il 49
Different Kinds of Searches 49
Search and Replace 55

Checking Spelling Using Ispell 64

Word Abbreviations 74
Using Buffers, Windows, and Frames 82
Understanding Buffers, Windows, and Frames 82
Working with Multiple Buffers 85
Working with Windows 88
Working with Frames 93
More About Buffers 95
More About Windows 102
Holding Your Place with Bookmarks 106
EmacsasaWork Environmentl 114
Executing Commands in Shell Buffers 114
Using Dired, the Directory Editor 123
Printing from Emacs 140
Reading Manpages in Emacs 141
Using Time Management Tools 141
WritingMacros 150
Defining a Macro 151
Tips for Creating Good Macros 154
A More Complicated Macro Example 155
Editing a Macro 157
The Macro Ring 160
Binding Your Macro to a Key 160
Naming, Saving, and Executing Your Macros 161
Building More Complicated Macros 161
Executing Macros on a Region 167
Beyond Macros 168
Simple Text Formatting and Specialized Editing 170
Using Tabs 170
Indenting Text 176
Centering Text 186
Using Outline Mode 187
Rectangle Editing 194
Making Simple Drawings 204

Table of Contents

10.

11.

12.

Markup Language Support
Comments

Font-Lock Mode

Writing HTML

Writing XML

Marking up Text for TEX and LATEX

Computer Language Support
Emacs as an IDE

Writing Code

C and C++ Support

Java Support

The Java Development Environment for Emacs (JDEE)

Perl Support

SQL Support

The Lisp Modes

CustomizingEmacs
Using Custom

Modifying the .emacs File Directly

Modifying Fonts and Colors

Customizing Your Key Bindings

Setting Emacs Variables

Finding Emacs Lisp Packages

Starting Modes via Auto-Mode Customization

Making Emacs Work the Way You Think It Should

EmacsLispProgramming
Introduction to Lisp

Lisp Primitive Functions

Useful Built-in Emacs Functions

Building an Automatic Template System

Programming a Major Mode

Customizing Existing Modes

Building Your Own Lisp Library

VersionControl
The Uses of Version Control
Version Control Concepts

219
220
220
243
258

264
266
275
284
285
294
296
298

307
326
330
335
339
340
341
342

345
353
358
374
381
389
395

398
399

Table of Contents |

vii

How VC Helps with Basic Operations 401

Editing Comment Buffers 403

VC Command Summary 403

VC Mode Indicators 404
Which Version Control System? 405
Individual VC Commands 405
Customizing VC 411
Extending VC 412
What VC Is Not 413
Using VC Effectively 413
Comparing with Ediff 414

13. Platform-Specific Considerations 421
Emacs and Unix 421
Emacs and Mac OS X 427
Emacs and Windows 433

14. TheHelpSystem 440
Using the Tutorial 440
Help Commands 441
Help with Complex Emacs Commands 445
Navigating Emacs Documentation 446
Completion 453

A. EmacsVariables 457
B. EmacsLispPackages 464
C. BugsandBugFixes, 470
D. OnlineResources i 472
E. QuickReferencel 475
GloSSary 487
Index ... 493

viii | Table of Contents

Preface

Emacs is the most powerful text editor available today. Unlike most other editors (in
particular, unlike the standard Unix editor, vi), Emacs is a complete working envi-
ronment. No matter what you do, you can start Emacs in the morning, work all day
and all night, and never leave it: you can use it to edit, rename, delete, and organize
files; to compile programs; to run shell commands; and so on. Before windowing sys-
tems like X and Microsoft Windows became popular, Emacs often served as a com-
plete windowing system of its own. All you needed was a terminal, and you could
live within Emacs forever. Emacs is also infinitely flexible; you can write your own
commands, change the keys that are associated with commands, and (if you are will-
ing to take the time) do just about anything you want.

Why Read This Book?

Because it does so much, Emacs has a reputation for being extremely complicated.
We don’t think that’s warranted; we teach you Emacs from the ground up, covering
first the basics and then some of the more advanced features.

In this book, we have tried to reach as broad an audience as possible: from casual
users to professional writers and web authors to programmers to system administra-
tors. No matter what you do with Emacs, you will find it’s easy to learn; after one or
two sessions, you’ll know the basics of editing any file. After you learn the basics,
you can go on to learn about more advanced topics that provide the real benefits of
using Emacs. These include:

* Using multiple windows and buffers so you can work on several files at once
* Customizing keyboard commands
* Tailoring Emacs to fit your work style

* Making Emacs your work environment where you can do all your everyday
tasks, such as organizing files, compiling programs, and issuing shell commands

* Creating macros to streamline repetitive tasks

* Using Emacs to support programming in many languages (including C, C++,
Lisp, Java, and Perl)

* Formatting files with various markup languages, such as HTML and XML

* Using word abbreviations to avoid spelling out long phrases or to correct com-
mon misspellings

Of course, many of the topics may not apply to you; some topics may be appropri-
ate for a second reading but not for the first. Toward the end of the preface, we’ll
sketch several different ways to approach the book, depending on your interests and
experience.

Which Emacs Is Which?

Numerous versions of Emacs are available, offering a wide range of features, but two
are in widespread use today: GNU Emacs and XEmacs. (An exhaustive list of Emacs
implementations can be found at http://www.finseth.com/~fin/emacs.html.) XEmacs
was originally tailored for GUI usage and has a fairly wide user base, but lacks some
of the features of GNU Emacs.”

This book covers GNU Emacs. Since its appearance, GNU Emacs has become the
most popular, powerful, and flexible Emacs, and there’s no reason to believe that
this situation will change. If you know GNU Emacs, you will be able to adapt to
any other Emacs implementation with no trouble; it’s not so easy to go in the
other direction.

This book, however, isn’t limited to GNU Emacs users. Because of the similarities
between different Emacs implementations, this book should help you get started
with any Emacs editor. The basic keyboard commands change little from one editor
to another—you’ll find that C-n (for Ctrl-n) almost always means “move to the next
line.” Emacs editors tend to differ in the more advanced commands and features,
but if you are using these more advanced facilities and you aren’t using GNU Emacs,
you should consider making the switch.

What’s New in This Edition?

This third edition covers GNU Emacs 21, specifically 21.3 and even more specifi-
cally 21.3.5.1 This new edition has been completely revised and expanded to cover
new features and to meet the evolving needs of Emacs users.

* Quite a few issues come up in discussions of GNU Emacs versus XEmacs, with character encoding schemes,
user interface differences, and copyright issues among them. We’re not interested in taking sides in the bat-
tles between these emacsen.

1 Typically we would not find the need to be quite so specific, but the user interface changed at Emacs 21.3.5;
in particular you’ll notice different toolbar icons if you have an earlier version.

x | Preface

Here are some of the highlights of what we’ve changed:

User interface changes, including the addition of an icon-based toolbar, exten-
sive changes to menus, and a more graphical interface (Chapter 1)

How Emacs interacts with the operating system clipboard, including specific
clipboard-related commands (Chapter 2)

Dynamic abbreviations (Chapter 3)

Expanded coverage of the directory editor, Dired, to help you organize and work
with files more efficiently (Chapter 5)

Changes to the way Emacs handles tabs and indentation and how to get Emacs
to do what you want it to (Chapter 7)

Artist mode for drawing with the mouse (Chapter 7)
Inserting characters from other character sets in HTML files (Chapter 8)
Using font-lock mode for coloring text for easier editing (Chapter 9)

Expanded Java coverage, including how to install and use the Java Development
Environment for Emacs (JDEE) (Chapter 9)

Perl support with Cperl mode (Chapter 9)

Managing changes to large, multiple file projects more effectively using etags
(Chapter 9)

Customizing Emacs through the interactive Custom interface or through the .emacs
startup file (Chapter 10)

Expanded coverage of how version control mode connects with a variety of
change control systems, including CVS, RCS, Subversion, and SCCS
(Chapter 12)

A new chapter on platform-specific considerations, including details on how to
install the latest version of Emacs on Unix, Windows, and Mac OS X
(Chapter 13)

GNU Emacs and the Free Software
Foundation

You don’t need to know its history to use GNU Emacs, but its origins are an interest-
ing part of computer history. The Free Software Foundation (FSF), which maintains
and distributes GNU Emacs, has become an important part of computer culture.

A long time ago (1975) at MIT, Richard Stallman wrote the first Emacs editor.
According to the folklore, the original Emacs editor was a set of macros for TECO,
an almost incomprehensible and now obsolete line editor. The name Emacs stands
for “Editing Macros.” Tradition also has it that Emacs is a play on the name of a

Preface | xi

favorite ice cream store. Much has happened since 1975. TECO has slipped into
deserved obscurity, and Emacs has been rewritten as an independent program. Sev-
eral commercial versions of Emacs appeared, of which Unipress Emacs and CCA
Emacs were the most important. For several years, these commercial implementa-
tions were the Emacs editors you were most likely to run across outside of the aca-
demic world.

Stallman’s Emacs became prominent with the birth of the Free Software Founda-
tion (FSF) and the GNU Project in 1984. GNU stands for “GNU’s Not Unix” and
refers to a complete Unix-like operating system (OS) that Stallman and his associ-
ates were building.

Stallman founded the FSF to guarantee that some software would always remain
free. Note that Free does not necessarily mean cheap (you may have to pay a fee to
cover the cost of distribution); it most definitely does mean liberated from restric-
tions about how it can be used and specifically how it can be shared.

Stallman is widely recognized as the founder of the free software movement, which
was an important predecessor of the open source movement. Linux is now the most
prominent example of open source software, and it falls under the GNU Public
License or GPL (available online at http://www.gnu.org/copyleft/gpl.html). Stallman
argues that much of Linux outside the kernel itself is GNU software and so he refers
to it as GNU/Linux. All controversies aside, Stallman’s contribution to the open
source movement cannot be underestimated. GNU software and open source soft-
ware distributed under the GPL are a mainstay for developers and computer users all
over the world.

The FSF was created precisely to distribute programs under terms that encourage
you to share, rather than hoard, software. The GPL is designed to prevent an unfor-
tunately common practice—namely, a company taking public domain code, making
a few modifications and bug fixes, and then copyrighting the modified version. Once
a company does this, the program has essentially become private property and disap-
pears from the public domain. Stallman formed the foundation because he finds this
practice abhorrent. As he explains in the GNU Manifesto, “I cannot in good con-
science sign a nondisclosure agreement or a software license agreement... So that I
can continue to use computers without dishonor, I have decided to put together a
sufficient body of free software so that I will be able to get along without any soft-
ware that is not free.” Elsewhere in the manifesto, Stallman calls sharing software the
“fundamental act of friendship among programmers.” Their software is free because
it can be shared and will always be shareable—without restriction. FSF software is
not under restrictive copyright laws, which Stallman objects to in principle. In fact,
he coined the term copyleft to describe the FSF’s sharable software base.”

* FSF programs such as Emacs are often distributed with commercial systems. Even in these cases, the General
Public License guarantees your right to use and give away their programs without restriction. Of course, the
license does not apply to other proprietary software with which GNU tools have been shipped.

xi | Preface

Since GNU Emacs was first released, many other pieces of the GNU operating envi-
ronment have fallen into place: C and C++ compilers (gcc and g++), a very powerful
debugger (gdb), substitutes for lex and yacc (called flex and bison, respectively), a
Unix shell (bash, which stands for “Bourne-Again Shell”), the Gimp (a graphics tool
comparable to Adobe PhotoShop), GNOME (a desktop environment for Linux), and
many other programs and libraries. Many important open source projects that origi-
nally used variants of the GPL or other licensing schemes have adopted the GPL as
their license, including Python, Mozilla, and Zope. Author David Wheeler argues
that all open source projects should release their software under a GPL-compatible
license” (see http://www.dwheeler.com/essays/gpl-compatible.html for his views and
some statistics about GPL’d software). With Linux, GNU tools, and other GPL’d
software, it’s possible to have a complete operating environment consistent with the
values set forth by the FSF.

An Approach to Learning Emacs

This book is designed to get you started with Emacs as quickly as possible, whether
you are an experienced computer user or a novice. The first two chapters give you
the basics you need to know, and the rest of the book builds on these basics. After
the first two chapters, you don’t have to read the rest consecutively; you can skip to
the topics that interest you. Additionally, the book is designed to give you just the
level of hand-holding you want; you can either read the book in detail or skim it,
looking for tables of commands and examples.

Here are some reading paths you could take:

If Read

You are a casual user Preface, Chapters 1-3, 14

You are a programmer or system administrator Preface, Chapters 1--5,9-12

You are a writer or production person Preface, Chapters 1-3,7, 8, 14
You want to customize Emacs Chapter 10 and possibly Chapter 11
You write HTML or XML Preface, Chapters 1-3, 8

You want to use operating system commands in Emacs Chapter 5

You use Emacs on Windows or Mac 0S X Chapter 13

These reading paths are offered only as a guideline. Emacs is one gigantic, function-
ally rich editor. We’ve divided it up into digestible bites for you, so you don’t have to

* GPL-compatible is a critical distinction for many organizations. As our reviewer Mike Trent points out,
many organizations release their software under a modified GPL because the GPL’s license is actually
“viral.” That is, if one line of GPL’d code appears in a project, the entire project must be GPL’d. This
means corporations interested in protecting their assets but still wanting to share code with the open
source community cannot use the GPL without some modification.

Preface | xiii

be put off by its size and scope. The best way to learn Emacs is incrementally; learn a
little now, then learn more features as you get curious about them. If you need to do
something and don’t know how to do it in Emacs, Emacs probably already does it; if
it doesn’t, you can learn how to write a Lisp function to add it to Emacs (see
Chapter 11 for details). The online help system is an excellent place to learn about
new features on the fly; online help is discussed in Chapter 1 and in more detail in
Chapter 14.

Here’s a list of some features you might want to learn about on a rainy day:

* How to use multiple Emacs buffers, windows, and frames (Chapter 4)
* Word abbreviation mode (Chapter 3)

* Macros (Chapter 6)

* How to map function keys to Emacs commands (Chapter 10)

* How to issue (and edit) shell commands (Chapter 5)

* How to organize files in Emacs (Chapter 5)

* Using ediff to compare files (Chapter 12)
Here’s a quick summary of what’s in each chapter:

Chapter 1, Emacs Basics, tells you how to start Emacs and how to work with files. It
also provides a quick introduction to the online help system.

Chapter 2, Editing, explains commands for moving around, copying and pasting
text, and undoing changes. It also introduces very basic customization.

Chapter 3, Search and Replace, covers more editing features, including search and
replace, word abbreviation mode, and spell checking.

Chapter 4, Using Buffers, Windows, and Frames, describes how to use multiple buff-
ers and windows, both Emacs-style windows (that divide a single OS window) and
traditional OS windows (which Emacs refers to as frames). It also discusses how to
bookmark your place in large files.

Chapter 5, Emacs as a Work Environment, talks about issuing commands from
within Emacs, working with files and directories, and using basic time management
tools such as the calendar and diary.

Chapter 6, Writing Macros, discusses using macros to eliminate repetitive tasks.

Chapter 7, Simple Text Formatting and Specialized Editing, covers basic text format-
ting (such as tabs, indentation, and centering) as well as some of the more rarefied
features, like outline mode and rectangle editing.

Chapter 8, Markup Language Support, describes Emacs support for HTML, XML,
TEX and IATEX.

xiv | Preface

Chapter 9, Computer Language Support, covers Emacs as a programming environ-
ment, including editing support for C, Java, Lisp, Perl, and SQL, as well as the inter-
face to compilers and the Unix make utility. It also describes the Java Development
Environment for Emacs (JDEE).

Chapter 10, Customizing Emacs, describes Emacs’s customization facilities. The
interactive Custom tool allows you to change variables without editing your star-
tup file. The chapter also explains how to set up your .emacs customization file. It
describes how to modify your display, keyboard commands, and editing environ-
ment as well as how to load Lisp packages for extra functionality.

Chapter 11, Emacs Lisp Programming, describes the basics of Emacs Lisp, the lan-
guage you can use to further customize Emacs.

Chapter 12, Version Control, describes VC mode for version control and its interface
to CVS, RCS, Subversion, and SCCS.

Chapter 13, Platform-Specific Considerations, discusses how to install Emacs on
Unix, Windows, and Mac OS X. It also provides platform-specific information for
Windows and Mac OS X.

Chapter 14, The Help System, describes Emacs’s rich, comprehensive online help
facilities.

Appendix A, Emacs Variables, lists many important Emacs variables, including all
the variables mentioned in this book.

Appendix B, Emacs Lisp Packages, lists some of the most useful Lisp packages that
come with Emacs.

Appendix C, Bugs and Bug Fixes, tells you how (and when) to report bugs you find in
Emacs. It also describes how to contribute to the GNU Project, whether through
code enhancements or monetarily.

Appendix D, Online Resources, gives a tour of some important Emacs-related web
sites.

Appendix E, Quick Reference, provides brief descriptions of the most important
Emacs commands discussed in this book.

The book concludes with a glossary that defines Emacs terms you’ll encounter, an
index, and a detachable quick reference card that summarizes important commands
for easy access.

Preface | xv

What We Haven't Included

GNU Emacs is a large and powerful editor; in this book, we give you only a sample
of what it does. Many features have been left out, and more features are added all the
time. Some topics, however, are not covered:

Compatibility modes
GNU Emacs provides compatibility modes for vi, for example. We've left a dis-
cussion of these modes out. If you really want to use vi or another editor, do so.
You’re better off getting to know Emacs on its own terms rather than pretend-
ing it is something else.

Many programming language modes
In this book, we discuss editing modes for C++, Java, Lisp, Perl, and SQL. There
are many modes for other languages, including rare languages like Scheme.
There’s no way we could discuss everything.

Advanced Lisp programming
GNU Emacs incorporates a complete Lisp interpreter. We give a very basic and
brief introduction to Emacs Lisp; Chapter 11 should be enough to get you
started, but it really only scratches the surface. We recommend the FSF’s Emacs
Lisp Reference Manual, now included in the Emacs distribution.

Using Emacs to access the Internet
When our last edition came out, it was common to use Emacs to access Internet
resources or read email. Now that isn’t so common; better mailers, browsers,
and other tools are commonly in use on all platforms.

Unicode support
At present, Emacs is on its way to full Unicode support; that is the most impor-
tant change slated for the next major release. At this writing, Unicode support is
spotty.

Games and amusements
GNU Emacs includes an eclectic bunch of games and amusements, including the
ability to pipe random quotations from Zippy the Pinhead into the famous
“Eliza” pseudopsychoanalyst. Emacs 21 includes a Games menu under Tools
with several cool ways to waste time in Emacs (and it doesn’t even include
Emacs’s version of pong, one of our favorites). Alas, we had to draw the line
somewhere.

The Meta Key

Emacs commands consist of a modifier, such as Control, which you hold down
as you would the Shift key, and a series of keystrokes. For example, Control-x
Control-s saves a file.

xi | Preface

The other modifier Emacs uses is the Meta key. Few keyboards have keys labeled
Meta. Because of this, in previous editions of this book, we refused to talk about the
Meta key and substituted Esc in all our instructions.

In this edition, we want you to learn where the Meta key is. Typically Meta keys are
to the immediate left and right of the Space bar. On Linux and Windows keyboards,
the Alt key is the Meta key. On Mac keyboards, the Apple key, often called Com-
mand is the Meta key by default.

Why learn about and use the Meta key? The reason is speed. We emphasize key
bindings in this book. New users may find icons and menus helpful, but in the long
run, learning how to keep your hands on the keyboard allows you to gain speed and
boosts your productivity. The Meta key will help you gain that speed and make it
easy for you to use Emacs help, which refers to Meta.

Depending on your style, you may still prefer to use Esc instead of Meta. Just bear in
mind that with Esc you press and release the key, then press the next key.

Conventions Used in This Book

This section covers the conventions used in this book.

Keystroke Notation

Emacs commands consist of a modifier, such as Ctrl or Meta, followed by one or
two characters. Commands shown in this book abbreviate Ctrl to C and Meta to M:

Cg

Hold down the Ctrl key and press g.
M-x

Hold down the Meta key and press x.

Sometimes Meta is followed by a literal hyphen character. In these cases, we spell
out Meta:

Meta -
Hold down the Meta key and press -.

To complete a command you may need to press Enter. (This key may be labeled
Return.)

Enter
Press the Enter key.

Esc
Can be used as an alternative to Meta. Press Esc, release it, then press the next
key.

Preface | xvii

A few mouse commands use the Shift key as a modifier, often in combination with
the Ctrl key. This is abbreviated as:

S-right

Hold down Shift and click the right mouse button.
C-S-right

Hold down Shift and Ctrl and click the right mouse button.
All Emacs commands, even the simplest ones, have a full name; for example, forward-
word is equivalent to the keystrokes M-f, and forward-char is equivalent to C-f. This
tying of a command to a keystroke combination is called a key binding. Some com-
mands have only full names, with no corresponding key binding.

When we discuss a command, we’ll give both its full name and the keystrokes (if
any) that you can type to invoke it.

Command Tables

To find a group of commands quickly, look for tables in each section that summa-
rize commands. These tables are formatted like this:

Keystrokes Command name Action

Cn next-line Move to the next line.

CxCf find-file Open a specified file.

File — Open File

(none) yow Print ineffable wisdom from the Pinhead in the minibuffer.

The first column shows the default key binding for the command, the second col-
umn shows the command’s full name, and the third column describes what the
command does. For example, pressing C-n (also known as the next-line com-
mand) moves the cursor to the next line in the file. Some commands, like C-x C-f,
can also be reached through menus. If there is a menu option for a particular com-
mand, it is given in italics below the keystrokes for the command. For example,
you can use the find-file command by typing C-x C-f or by selecting Open File
from the File menu. Sometimes you’ll see (none) in the keystrokes column, which
doesn’t mean you can’t use the command, but rather that the command isn’t
bound to particular keystrokes. To use commands with no keystrokes, type M-x,
followed by the command’s full name, and press Enter. (Try typing M-x pong
Enter sometime.)

xvii | Preface

Examples

Throughout the book, you’ll find keystrokes to type, followed by a screenshot show-
ing the results.

Type: C-x C-fmyfile

hd emacs@localhost.localdomain

File Edit Options Buffers Tools Help

D x BEs $EBEREXT

X 1

¥

—u:-- myfile a1l Ll NN o ————— g
R (Hew file}

Use the find-file command to open a file or create a new file.

C-x C-f is in bold, indicating that this is exactly what you type. myfile is shown in
constant width italics because you could substitute any filename you choose and
need not type exactly what you see here.

Typically, these screenshots come from a Linux system. We also include screenshots
taken on Mac OS X and Windows. When we show such screenshots, we include an
indication of the platform in the caption for the screenshot.

Toward the end of the book, when we’re discussing programming modes, customi-
zation, and Lisp programming, screenshots become rather unwieldy. We eventually
use fewer of them. Instead, we may show one or two lines of text. If it’s relevant, we
show the cursor’s position:

/* This is a [@ comment */

Font Usage
This book uses the following font conventions:

boldface
Indicates operating system commands, Emacs keystrokes, command names, and
variables.

italic
Indicates filenames, URLs, and new terms when first introduced.

Preface | xix

constant width
Indicates buffer names, Lisp code, C code, Emacs messages, and other excerpts
from programs.

constant width italic
Indicates dummy parameters that you replace with an actual value. May also be
shown sometimes in angle brackets (<filename>).

How to Contact Us

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)

1-707-829-0515 (international/local)

1-707-829-0104 (FAX)

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we’ll list examples, errata, and any plans for
future editions. You can access this page at:

http://www.oreilly.com/catalog/gnu3/

= When you see a Safari® enabled icon on the cover of your favorite tech-
B§°a!°a" nology book that means the book is avaialbe online through the
Trrims O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual library that let’s you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you nee the most accurate, current informa-
tion. Try it free at http://safari.oreilly.com.

For more information about this book and others, see the O’Reilly web site:
http://www.oreilly.com

You can also send questions about Emacs and suggestions about this book to
deb@oreilly.com.

xx | Preface

Acknowledgments

Debra Cameron: First, I would like to thank Duffy Craven for introducing me to
Emacs. Second, I would like to thank my coauthors. Bill Rosenblatt was a tremen-
dous help on the first edition of this book, and Eric Raymond worked with blinding
speed and brilliance on the second, providing some input on the third as well. T
would especially like to thank my coauthors Jim Elliott and Marc Loy, without
whom, in all honesty, this third edition would never have been finished. Their con-
stant encouragement, support, and hard work helped make this edition a reality. I
would like to thank all the readers who wrote in with their suggestions, especially
Russell Harris, Seema Kumar, and Hui Oulan. I would also like to thank Eric
Pement, who pointed me to the very interesting TEI Emacs add-on, as well as the
authors of that extended environment for Emacs, including Sebastian Rahtz and Syd
Bauman. Personally, I would like to thank my husband Jim and my kids Meg, David,
Beth, and Kevin for their patience and help during the revision of this book and also
my friends Irene and Jacki for their support. Most of all, I would like to thank all the
developers and hackers who continue to make GNU Emacs the most amazing piece
of software I have ever worked with.

James Elliott: I have to thank Deb for asking me to help people learn about Emacs.
I've long admired (and relied on) the editor and its ever-growing ecosystem of tools
and extensions, as well as the philosophy and results of the Free Software Founda-
tion. They represent a distillation of what makes computing an interesting and valu-
able field for me, and T am honored to be part of this project. Ironically, I have to
also thank Deb for letting me take a big chunk of time off when my Hibernate book
came into being.

Thanks are also due to Marc, both for initially introducing me to the fine folks at
O’Reilly and for his help and input on this book. He ended up contributing more
than he signed up for when I got pulled away in the middle. Nor should I forget my
fine colleagues at GE’s Corporate Research and Development Center in Niskayuna,
New York who first introduced me to the mysteries of Emacs as an intern there. I'm
indebted to Joe for his love and support. And let’s hear it for the cast of thousands
who have grown Emacs into what it is today!

Marc Loy: I have the occasionally lazy—no, let’s say overworked—staff at the Uni-
versity of Southern California's computer labs to thank for getting me started on
Emacs. They were out of vi cheat sheets when I sat down to write my first computer
program. (I won’t admit to the language I had to use.) I've been grateful for that
happenstance ever since. I'd also like to thank Jim and Deb for their cheery outlook
on things as we finished up this latest edition. As always, my sister Amy and my
partner Ron remain constant forces for good in my world and make all the silliness
(like politics) surrounding the fun stuff (like writing about Emacs) tolerable.

Preface | xxi

Eric Raymond: My thanks go first to the hacker community at large, all the people
who created the rich tradition of Emacs Lisp programming that takes Emacs custom-
ization from elegant theoretical possibility to practical tool. I learned what I know
partly from reading code written by the likes of Olin Shivers, Jamie Zawinski, Kyle
Jones, Barry Warsaw, Roland McGrath, Richard Stallman himself (of course), and
many others. Secondly, my thanks and warmest love go as always to my wife Cathe-
rine, who supported me on many levels while I worked on my bits of this book.
Finally, my thanks and respect to the hip, professional, and clueful people at
O’Reilly. They know how to produce a good book and how to treat an author right.
They care, and it shows.

Bill Rosenblatt: I would like to thank the following people: Professor Richard Mar-
tin (Princeton Classics Department), for planting the seed in me that eventually
turned writing from a chore to a pleasure; Intermetrics, Inc., for giving me little
enough to do that I could fritter away my workdays delving into GNU Emacs; Hal
Stern, for getting me this gig; Sandy Wise, for his help; Jessica Lustig, for her love
and support; and most importantly, my grad-school housemates for putting up with
a tied-up phone line at all hours of the day and night.

xxii | Preface

CHAPTER 1
Emacs Basics

Some of you out there are probably dying to get your hands on the keyboard and
start typing. We won’t try to stop you; turn to the section called “Starting Emacs”
and you can go ahead. But do read the beginning of this chapter later when you’re
ready for a break. Emacs is much easier to learn if you understand some of the basic
concepts involved, which we discuss in the following introduction.

Introducing Emacs!

GNU Emacs is one of the most commonly used text editors in the world today.
Many users prefer Emacs to vi (Unix’s standard editor) or to other GUI text editors.
Why is Emacs so popular? It isn’t the newest tool, and it’s certainly not the prettiest.
But it may well be the most useful tool you’ll ever learn. We want to present what
you need to know about Emacs to do useful work, in a way that lets you use it effec-
tively. This book is a guide for Emacs users; it tries to satisfy the needs of many read-
ers, ranging from casual users to programmers.

Our approach therefore isn’t to tell you absolutely everything that Emacs does. It has
many features and commands that this book doesn’t describe. We don’t think that’s
a problem; Emacs has a comprehensive online help facility that helps you figure out
what these are. We focus our attention on describing how to get useful work done.
After covering basic editing in the first three chapters, we describe how to use Emacs
as a comprehensive working environment: how to boost productivity with multiple
buffers and windows, how to give commands without leaving the editor, how to take
advantage of special editing modes, how to use Emacs for editing special types of
files (source files for various programming languages), and so on. We cover the most
important commands and the most important editing modes. However, you should
always keep one principle in mind: Emacs does many things well, but it isn’t impor-
tant for that reason. Emacs is important because of the integration of different things
you need to do.

What does integration mean? A simple example will help. Assume that someone
sends you a mail message describing a special command for accessing a new printer.
You can fire up an Emacs shell, paste the command into Emacs, and execute it
directly. If it works, you can edit your startup file to create an alias for the com-
mand. You can do all this without leaving the editor and without having to retype
the command once. That’s why Emacs is so powerful. It’s more than just an editor;
it’s a complete environment that can change the way you work.

An initial word of advice, too. Many people think that Emacs is an extremely diffi-
cult editor to learn. We don’t see why. Admittedly, it has a lot of features, and you
probably will never use all of them. But any editor, no matter how simple or com-
plex, has the same basic functions. If you can learn one, you can learn any of them.
We'll give you the standard mnemonic devices that will help you remember com-
mands (like “C-p means previous line”), but we really don’t think even these are nec-
essary. They get you over an initial hump in the learning process but don’t make
much difference in the long run. Learning to use an editor is basically a matter of
learning finger habits: learning where to put your fingers to move to the previous
line. If you experiment with Emacs and try typing a few of our examples, you’ll
quickly acquire these finger habits. And after you’ve acquired these habits, you’ll
never forget, any more than you’ll forget how to ride a bicycle. After using Emacs for
a day or two, we never had to think, “C-p means previous line.” Our fingers just
knew where to go. Once you’re at this point, you’re home. You can become creative
with Emacs and start thinking about how to put its features to work for you. Emacs
has extensive menus, but we still recommend learning the key bindings for com-
monly used commands. Good finger habits can make you an incredibly fast typist,
and reaching from keyboard to mouse only slows you down.

The finger-habits approach also implies a different way of reading this book. Intellec-
tually, it’s possible to absorb a lot from one reading, but you can form only a few
new habits each day. (Unless, of course, they’re bad habits.) Chapter 2 covers most
of the basic editing techniques you’ll use. You may need to read it several times, with
a slightly different focus each time. For example, Emacs gives you many different
ways to move forward: you can move forward one character, one word, one line, one
sentence, one paragraph, one page, and so on. All of these techniques are covered in
Chapter 2. Start by learning how to move forward and backward, then gradually add
more complex commands. Similarly, Emacs provides many different techniques for
searching through a file, covered in Chapter 3. Don’t feel obliged to learn them all at
once; pick something, practice it, and move on to the next topic. No one will com-
plain if you have to work through the first three chapters of our book several times
before you’re comfortable. Time spent developing good habits is time well spent.

2 | Chapter1: Emacs Basics

Understanding Files and Buffers

You don’t really edit files with Emacs. Instead, Emacs copies the contents of a file
into a temporary buffer and you edit that. The file on disk doesn’t change until you
save the buffer. Like files, Emacs buffers have names. The name of a buffer is usually
the same as the name of the file that you’re editing. There are a few exceptions. Some
buffers don’t have associated files—for example, *scratch* is just a temporary prac-
tice buffer, like a scratchpad; the help facility displays help messages in a buffer
named *Help*, which also isn’t connected to a file.

A Word About Modes

Emacs achieves some of its famed versatility by having various editing modes in
which it behaves slightly differently. The word mode may sound technical, but what
it really means is that Emacs becomes sensitive to the task at hand. When you’re
writing, you often want features like word wrap so that you don’t have to press Enter
at the end of every line. When you’re programming, the code must be formatted cor-
rectly depending on the language. For writing, there’s text mode; for programming,
there are modes for different languages, including C, Java, and Perl. Modes, then,
allow Emacs to be the kind of editor you want for different tasks.

Text mode and Java mode are major modes. A buffer can be in only one major mode
at a time; to exit a major mode, you have to enter another one. Table 1-1 lists some
of the major modes, what they do, and where they’re covered in this book.

Table 1-1. Major modes

Mode
Fundamental mode

Function
The default mode (Chapter 6)

Text mode For writing text (Chapter 2)

View mode For viewing files but not editing (Chapter 4)
Shell mode For running a shell within Emacs (Chapter 5)
Outline mode For writing outlines (Chapter 7)

Indented text mode For indenting text automatically (Chapter 7)

Paragraph indent text mode

For indenting the first line of each paragraph (Chapter 7)

Picture mode For creating ASCII drawings using the keyboard (Chapter 7)
HTML mode For writing HTML (Chapter 8)

SGML mode For writing SGML and XML (Chapter 8)

LaTeX mode For formatting files forTEX and IATEX (Chapter 8)

Compilation mode
ccmode

Javamode

For compiling programs (Chapter 9)
For writing C, (++, and Java programs (Chapter 9)
For writing Java programs (Chapter 9)

A Word About Modes

3

Table 1-1. Major modes (continued)

Mode

Perl mode and Cperl mode
SQL mode

Emacs Lisp mode

Lisp mode

Lisp interaction mode

Function

For writing Perl programs (Chapter 9)

For interacting with databases using SQL (Chapter 9)

For writing Emacs Lisp functions (Chapters 9 and 11)

For writing Lisp programs (Chapters 9 and 11)

For writing and evaluating Lisp expressions (Chapters 9 and11)

Whenever you edit a file, Emacs attempts to put you into the correct major mode for
what you’re going to edit. If you edit a file that ends in .c, it puts you into cc mode. If
you edit a file that ends in .el, it puts you in Lisp mode. Sometimes it looks at the
contents of the file rather than just its name. If you edit a file formatted for TEX,
Emacs puts you in LaTeX mode. If it cannot tell what mode you should be in, it puts
you in fundamental mode, the most general of all. Because Emacs is extensible, add-
in modes are also available; we talk about some in this book, though we do not list
them in Table 1-1.

In addition to major modes there are also minor modes. These define a particular
aspect of Emacs’s behavior and can be turned on and off within a major mode. For
example, auto-fill mode means that Emacs should do word wrap; when you type a
long line, it should automatically make an appropriate line break. Table 1-2 lists

some minor modes, what they do, and where they’re covered in this book.

Table 1-2. Minor modes

Mode
Auto-fill mode
Overwrite mode

Auto-save mode

Isearch mode

Flyspell mode

Flyspell prog mode

Abbrev mode

Paragraph indent text mode
Refill mode

Artist mode

Function
Enables word wrap (Chapter 2).
Replaces characters as you type instead of inserting them (Chapter 2).

Saves your file automatically every so often in a special auto-save file
(Chapter 2).

For searching (Chapter 3).

For flyspell spell-checker (Chapter 3).

For spell-checking programs with flyspell (Chapter 3).
Allows you to use word abbreviations (Chapter 3).

For indenting the first line of each paragraph (Chapter 7).

A mode in which Emacs attempts to fill paragraphs as you edit them (a bit
experimental; mentioned in Chapter 2).

For creating ASCII drawings using the mouse (Chapter 7).

4 | Chapter1: EmacsBasics

Table 1-2. Minor modes (continued)

Mode Function

Outline mode For writing outlines (Chapter 7).

SGML name entity mode For inserting special characters in HTML, SGML, and XML documents
(Chapter 8).

1S0 accents mode For inserting accented characters in text files.

Font lock mode For highlighting text in colors and fonts to improve readability (separating, for
example, comments from code visually) (Chapter 9).

Compilation mode For compiling programs (Chapter 9).

Enriched mode For saving text attributes (Chapter 10).

VCmode For using various version control systems under Emacs (Chapter 12).

Info mode A mode for reading Emacs’s own documentation (Chapter 14).

You may have noticed that several modes, including paragraph indent text mode,
outline mode, and compilation mode, are both major and minor modes. Each can be
used alone—as a major mode—or with another major mode as a minor mode.

There are many other modes that we won’t discuss, including modes for some
obscure but interesting programming languages (like Modula-2). There are also some
other modes that Emacs uses itself, like Dired mode for the directory editing feature
(described in Chapter 5).

In addition, if you’re good at Lisp programming, you can add your own modes.
Emacs is almost infinitely extensible.

Starting Emacs

To start Emacs, simply click on the Emacs icon or type emacs on the command line
and press Enter.”

* How you start Emacs may vary by platform. Linux has no icon on the desktop by default; Windows and Mac
OS X do (if you've installed Emacs on these platforms). Note that Mac OS X comes with a version of GNU
Emacs installed in /usr/bin, and that is what runs by default when you start up Emacs using the Terminal
application. You won’t be able to use the mouse at all if you run Emacs in the Terminal application, and
there are a number of other limitations as well. Better versions of GNU Emacs are available to you; see
Chapter 13 for details.

StartingEmacs | 5

Click on the Emacs icon or, from the command line, type: emacs Enter

emacs@|ocalhost.localdomain
File Edit Options Buffers Tools Help
A =i =
DExEHEA OB QE XD
X
GMU Emacs is one component of the GNU/Linu« operating system.
“ou can do basic editing with the menu bar and scroll bar using the mouse.
Useful File menu items:
Exit Emacs {Or type Contral-< fallowed by Control-c)
Recover Session Recover files you were editing before a crash
This is GNU Emacs 21.3.50.1 (iB86-pc-linus-gnu, X toolkit, Xaw3dd scrall bars)
of 2004-06-23 on localhostlocaldomain
Copwight (T 2002 Free Soffware Foundafion, Inc.
If an Emacs session crashed recently, type M-x recover-session RET
to recover the files you were editing.
7
e L |
J¥ Loading tooltip...done

Starting Emacs.

You’ll see a short message describing a few important menu items and the version of
Emacs that you're running. It may appear as a graphical splash screen (like the one
shown here) or a text splash screen. This message disappears as soon as you type the
first character. Emacs then puts you in an (almost) empty buffer called *scratch*, an
ideal place for you to experiment.

About the Emacs Display

When you enter Emacs, you see a large workspace near the top of the window where
you do your editing. (See Figure 1-1.)

A cursor marks your position. The cursor is also called point, particularly among peo-
ple who are more familiar with Emacs and in the online help system; therefore, it’s
useful to remember this term.

6 | Chapter1: EmacsBasics

emacs@ localhost.localdomain

menu bar —¢ File Edit Options Buffers Tools Help

b [x HE S ¥ OHQE XD

;; This buffer is for notes you don't want to sawe, and for Lisp evaluation.
;i If you want to create a file, wisit that file with C-x G-f,
;; then enter the text in that file's own buffer.

Cursor |

buffer ~ amount of buffer
name displayed

7
mode line —»=11:== *scratch* all L5 (Lisp Tnteraction) J

mini buffer —He-

— | —
line number major mode

Figure 1-1. Understanding the Emacs display

You don’t have to do anything special before you start typing. As long as you type
alphanumeric characters and punctuation, Emacs inserts them into your buffer. The
cursor indicates where Emacs inserts the new characters; it moves as you type.
Unlike many editors (particularly vi), Emacs does not have separate modes for insert-
ing text and giving commands. Try typing something right now, and you’ll begin to
see how easy Emacs is to use. (If you get stuck for any reason, just press C-g.)

The Toolbar

The toolbar is a new feature in Emacs 21. Its basic icons and their functions are listed
in Table 1-3. Note that the toolbar is context sensitive; in some modes, such as the
Info mode for reading the Emacs manual, the toolbar changes to provide browsing
help. We’ll discuss those icons when we cover the relevant modes.

Table 1-3. Icons on the Emacs toolbar

Icon Function Where to learn more
| D Find a file or create a new file (supplying the This chapter

filename).

F= Start the directory editor so you can manipu- Chapter 5
|ate files and folder.

X Kill the current buffer. Chapter 4

[El Save current buffer in its associated file. This chapter

[Eél' Save current buffer as a different file. This chapter

About the Emacs Display | 7

Table 1-3. Icons on the Emacs toolbar (continued)

Icon Function Where to learn more
% Undo. Chapter2
M, Cut text that comprises the current region. Chapter2
Copy text in current region. Chapter2
Paste cut or copied text. Chapter 2
1 Search for a string. Chapter 3
.g. Print page (with headings). Chapter 5
K Customize using interactive interface. Chapter 10
@ Start online help system. Chapter 14

If you don’t like the toolbar, you can hide it using a menu option (Options - Show/
Hide — Toolbar), and choosing Options — Save Options. For more information, see
“Making Emacs Work the Way You Want” at the end of Chapter 2.

The Menus

The menu bar menu lists the options File, Edit, Options, Buffers, Tools, and Help;
you can explore them to see what options are available.

In addition to navigating the menus using the mouse, Emacs now offers pop-up
menus. In the Emacs window, hold down Ctrl and click the right mouse button to
pop up the Edit menu.”

You can access menus without a mouse using the keyboard. In this case, using key-
board commands is much more efficient than menus, but for completeness, we’ll
show you how to use the text-based menus. (If you prefer to use the mouse with
Emacs but have access only to a text interface, see Chapter 13 to learn how to down-
load and install a version of Emacs that runs graphically on Unix, Linux, Mac OS X,
or Windows.)

* Emacs works best with a three-button mouse (more buttons are okay, t00).

8 | Chapter1: EmacsBasics

If your mouse does not work with the menus, press F10 or M-" (a back quote, the
single open quotation mark, located above the Tab key in the upper-left corner of
many keyboards) to access them.

Press: F10

® 006 Terminal — emacs — 80x24
Tools Minibuf Help

;3 Thiz buffer is for notes wou don't want to save, and for Lisp evalughion.
33 If wou want to create g file, wisit that file with C-x C-f,
;3 then enter the text in that file's own buffer.

Presz Pogelp Key to reach this buffer from the mlnlbuffer

Alternatively, you can use Up/Down keys (or your History keys) to change
the item in the minibuffer, and press RET when wou are done, or press the
marked letters to pick up wour choice. Type C-g or ESC ESC ESC to concel.
In thiz buffer, tvpe RET to select the completion near point.

Pozsible completions are:

f==:File e==:Edit
o==x0ptions b==xBuffers N/
t===Tools Yy

Using text-based menus (Emacs 21.2 on Mac OS X Terminal application).

You can select text-based menu options in three ways:

* You can press Enter to select the default option that appears in the minibuffer. If
you want a different one, press the up or down arrow key until the option you
want appears and press Enter.

* You can type the letter preceding the option in the *Completions* buffer. For
example, type f to choose File.

* You can press PgUp to move to the *Completions* buffer, then use the arrow
keys to move to the option you want. Press Enter. (On Mac OS X, press Shift-
PgUp instead.)

After you select a menu option, choices for that menu appear. Repeat the process
until you find the option you’re looking for.

The Mode Line

Just above the bottom of the window (on the second-to-last line), Emacs prints a lot
of information about what it’s doing. This line is called the mode line. At the begin-

About the Emacs Display | 9

ning of the mode line, you may see some information about the coding system that
Emacs is using for the file; usually you’ll see just --:, indicating that there is no
unusual encoding scheme in place. Near the left edge of the mode line, you may see
two asterisks (**¥). These asterisks indicate that you’ve modified whatever you’re
editing. If you haven’t made any changes, the asterisks won’t be there. Next, Emacs
prints the name of the buffer you are editing (*scratch*). Following this, Emacs
shows where you are in the buffer—your position relative to the rest of the file and
what line you are on (L5 for line 5 in Figure 1-1). If you’re at the beginning of the file,
Emacs prints the word Top; if you’re at the end, it prints Bot; if you’re in the middle,
it shows you a percentage (for example, 50% means you’re looking at the midpoint);
and if the entire file is visible, Emacs prints the word All. In parentheses following
this is the editing mode or modes you are in, in this case Lisp Interaction is the
major mode (no minor modes are active). The scrollbar on the side of the window
also indicates your position in the file.”

You will often work with several buffers simultaneously. In this case, each buffer has
its own mode line, and when you switch buffers, the mode line reflects the state of
the current buffer. Don’t worry about this for now; just remember that every buffer
has a mode line to describe it.

The Minibuffer

Below the mode line is the minibuffer. This is the area where Emacs echoes the com-
mands you enter and where you specify filenames for Emacs to find, values for
search and replace, and so on. It is also where Emacs displays error messages. If you
find yourself stuck in the minibuffer, press C-g to get out again.

Emacs Commands

You’'re about to start learning some Emacs commands, so let’s discuss them a bit
first. How do you give commands? Each command has a formal name, which (if
you’re fastidious) is the name of a Lisp routine. Some command names are quite
long; you usually wouldn’t want to type the whole thing. As a result, we need some
way to abbreviate commands.

Emacs ties a command name to a short sequence of keystrokes. This tying of com-
mands to keystrokes is known as binding. Even things you don’t normally think
about as commands, such as inserting the characters that you type, are handled
through the binding mechanism. Keys like “A” are bound to the Emacs command
self-insert-command, which inserts them into the buffer you are editing.t Most

* The scrollbar’s location depends on the platform and windowing system you’re using. Linux puts scrollbars
on the left while Mac OS X and Windows put them on the right by default. Note also that the order of the
information in the mode line is different if you run Emacs in a terminal window.

10 | Chapter1: EmacsBasics

actions that you would normally think of as editor commands are bound to key-
stroke sequences starting with Ctrl or Meta. Emacs also binds some commands to
mouse clicks (alone or modified by Shift or Ctrl) and to options on menus.

The authors of Emacs try to bind the most frequently used commands to the key
sequences that are the easiest to reach. Here are the varieties of key sequences you’ll
encounter:

* The most commonly used commands (such as cursor movement commands) are
bound to C-n (where n is any character). To press C-n, press and hold the Ctrl
key and press n, then release both keys.

¢ Slightly less commonly used commands are bound to M-n. To press M-n, press
and hold the Meta key (usually next to the space bar), then press n.

* Other commonly used commands are bound to C-x something (C-x followed by
something else—one or more characters or another control sequence). Among
other types of commands, file manipulation commands, like the ones you are
about to learn, are generally bound to C-x something.

* Some specialized commands are bound to C-c something. These commands
often relate to one of the more specialized modes, such as Java mode or HTML
mode. You won’t encounter them until later in this book.

* This list still doesn’t take care of all the possibilities. You can get at the remain-
ing commands by typing M-x long-command-name Enter. (This works for any
command really, but the keystrokes are usually easier to learn.)

You can define your own key bindings, too, and you should do so if you find your-
self using the long form of a command all the time. More on this topic in Chapter 10.

You can also access common commands through menus, but for maximum produc-
tivity, we recommend you learn the keystrokes, often given in parentheses following
the menu option.

Opening a File

You can open a file by specifying the filename when you start Emacs from the com-
mand line or by typing C-x C-f (the long command name is find-file).

The paper icon on the toolbar also runs this command. In some applications, a simi-
lar icon simply creates a new, unnamed file (e.g., Documentl in Word). Emacs
expects you to provide a filename, as we’ll see in a moment.

T In certain special editing modes, such as dired-mode for viewing and manipulating directories on your com-
puter, the normal typing keys don’t insert themselves. They are instead bound to special commands that do
things like opening and renaming files. This flexibility in defining and changing keymaps, while it might seem
somewhat arbitrary and overwhelming at first, is one of the great sources of power in Emacs.

OpeningaFile | 11

Press: C-x CAf

emacs® localhost.localdomain
File Edit Options Buffers Tools bdinibuf Help

D xEHE $EhE XD

’Ku
]
|

-u:-- *scratch* Eot LS {Lisp Interaction)--——----———————oooooooo—o 1
J¥ Find file: «

Emacs prompts you for a filename.

To press C-x C-f, hold down Ctrl, press x and then press f. Now release Ctrl.

After you press C-x C-f, Emacs uses the minibuffer to ask you for the filename.
Whenever Emacs wants input from you, it puts the cursor in the minibuffer. When
you’re done typing in the minibuffer, press Enter.

Type: newfile Enter

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

DExEHE bR E XD

4

-u:-- mnewfile A1l L1 T e B

T

Emacs starts another buffer with the new file in it.

What if you try to read the same file twice? Instead of creating a new buffer, Emacs
just moves you to the buffer the file is in.

You can also open a file in Emacs by dragging and dropping it on an Emacs window
or on the Emacs icon.

Now is a good time to try typing if you haven’t already done so. You may find your-
self wanting to learn more about cursor movement and editing; that’s fine. Feel free
to skim the rest of this chapter and go on to Chapter 2. We recommend that you
read the sections on saving files and exiting Emacs. There’s also a table of com-
mands at the end of this chapter for future reference. If you’d like to learn more
about working with files as well as some shortcuts, stay with us through the rest of
the chapter.

12 | Chapter1: EmacsBasics

If You Read the Wrong File

If you happen to read the wrong file, an easy way to get the right file is by typing C-x
C-v (for find-alternate-file). This command means “Read a different file instead of
the one I just read.” After typing C-x C-v, Emacs puts the name of the current file in
the minibuffer; you can then correct a typo or the path, the most common reasons
for finding the wrong file. Make the correction and press Enter. Emacs replaces the

buffer’s contents with the alternate file.

Letting Emacs Fill in the Blanks

Emacs has a very helpful feature known as completion. If you want an existing file,
you need only type the first few letters of the name, enough to uniquely identify the
filename. Press Tab, and Emacs completes the filename for you. For example, sup-

pose you are trying to find a file called dickens.

Type: C-x C-fdi

emacsd localhost.localdomain
File Edit Options Buffers Tools Minibuf Help

DExEHEBE ¥BODHRREXT

J
f

-u:-- mnewfile 51l 11 (Fundamental)------------——————-

[¥ Find file: ~/dill

After C-x C-f, Emacs prompts you for the filename; type the first few letters.

Press: Tab

emacs@localhost.localdomain
File Edit Options Buffers Tools Minibuf Help

DExHE S s BDRE XL

i

7

-u:-- newfile a1l 11 (Fundamental) -——-———-———-—————————

¥ Find file: ~/dickensfi

When you press Tab, Emacs fills in the rest of the filename.

Opening a File

13

Press: Enter

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Help

DExEHdB I XBHRE XY
o

THE PERIOD

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of helief, it

was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we

were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that

=l some of its noisiest authorities insisted on its being received. for

good or for evil, in the superlative degree of comparison only.

--:-- dickens Top L1 (Fundamental) ————===—==———=—————————--cooo—- 4

I

Emacs reads the file dickens.

If more than one file starts with di, Emacs displays a window with various files that
start with that string. You select one by typing a few more characters (enough to
identify your file as unique) and pressing Tab again. Or you can select one of the
alternatives with the mouse or by pressing PgUp to move to the completions win-
dow, moving to the desired option, then pressing Enter.

Completion also works for long command names. It’s a wonderful Emacs feature
that can save you time—and show you some commands you might not know existed
in the process. Chapter 14 provides more details on the glories of completion.

Inserting and Appending Files

If you want to insert one file into another, you simply move to the appropriate loca-
tion in the file and type C-x i. (Yes, we know, we haven’t told you how to move
around in a file yet. Use the arrow keys for now and we’ll teach you the “real” Emacs
cursor movement commands in Chapter 2.) To append a file, move to the end of the
file (M->) and type C-x i. As with C-x C-f, Emacs prompts you for the filename in
the minibuffer.

How Emacs Chooses a Default Directory

When you use any command that asks for a filename (such as C-x C-f), Emacs dis-
plays a default directory in the minibuffer and asks you to type the rest of the file-
name. How does Emacs choose the default directory? The default directory is taken
from the buffer that the cursor is currently in. If you are editing a file in your home
directory when you type C-x C-f, Emacs assumes you want to edit another file in

14 | Chapter1: EmacsBasics

your home directory. If you are editing the file /sources/macros/html.macs then Emacs
makes the default directory /sources/macros. If you want to find a file in another
directory, edit the default directory that Emacs displays.

Saving Files

To save the file you are editing, type C-x C-s. Emacs writes the file. To let you know
that the file was saved, it puts the message Wrote filename in the minibuffer. If you
haven’t made any changes to the file, Emacs puts the message No changes need to be
saved in the minibuffer. You can also get to this option by pressing the diskette on
the toolbar or choosing Save (current buffer) from the File menu.

If you decide to save something you’ve typed in the *scratch* buffer by typing C-x
C-s, Emacs asks you for a filename. After you give it a filename, Emacs changes the
mode line accordingly.

A related command is write-file (C-x C-w). It is the Emacs equivalent of the Save As
option found on many applications’ File menus. The write-file command asks you to
type a new filename in the minibuffer. However, if you just press Enter instead of
typing a new filename, write-file saves the file with its old name—just as C-x C-s
would have done. (It does ask if you want to replace the current file with the one in
this buffer, however.)

The write-file command is useful for editing files that you do not have permission to
change. Use the find-file command to get the file you want into a buffer, and then
use write-file to create your own private version, with a different name or path. This
maneuver allows you to copy the file to one that you own and can change. Of course,
the original file is not affected.

Leaving Emacs

To quit Emacs, type C-x C-c or close it like you would any other application. If you
have made changes to a buffer, Emacs asks you if you want to save them.” If you type
y, Emacs writes the file, then exits. If you type n, Emacs asks you to confirm that you
want to abandon the changes you made by typing yes or no in full. If you type no,
your normal Emacs session continues just as if you never attempted to exit. If you
type yes, you exit Emacs and the changes you made during this session do not
become permanent. Leaving without saving changes can be useful if you make
changes you didn’t intend to make.

* One exception to this rule is the *scratch* buffer. It’s a scratchpad and Emacs assumes you were doodling,
not doing serious artwork, so to speak. If you do any serious work in the *scratch* buffer, you must save it
explicitly.

LeavingEmacs | 15

By the way, Emacs is picky about whether you type y or yes. Sometimes it wants
one, sometimes the other. If it asks for a y, you can sometimes get away with typing
yes but not vice versa. If it beeps and displays, Please answer yes or no, you didn’t
enter the whole word and it wants you to.

Getting Help

Emacs has extensive online help, which is discussed further in Chapter 14. You can
enter help through the lifesaver icon on the toolbar or through the Help menu. Either
method will show you a help menu, described later in this section. To enter help using
the keyboard, press C-h. Pressing C-h ? gives you a list of options. Pressing C-h t
starts a tutorial that is an excellent introduction to Emacs.

To get information about the meaning of a keystroke combination, press C-h k for
describe-key. For example, if you type C-h k C-x i, Emacs displays a description of the
insert-file command, which is bound to C-x i. Pressing C-h f (for describe-function)
asks Emacs to describe a function (really just a command name, such as find-file).
Essentially, C-h k and C-h f give you the same information; the difference is that with
C-h k, you press a key whereas with C-h f, you type a command name.

Assume you want to find out about what C-x i does.

Type: C-hk

emacs® localhost.localdomain

File Edit Options Buffers Tools Help

DE x BES § DR &E XT
A I

THE PERIOD

It was the hest of times. it was the worst of times. it was the age of
wisdom, it was the age of foolishness, it was the epoch of helief, it
was the epoch of incredulity, it was the season of Light, it was the
sgason of Darkness, it was the spring of hope, 1t was the winter of
despair, we had everything before us. we had nothing before us. we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that

= some of its noisiest authorities insisted on its being received, for

good or for evil, in the superlative degree of comparison only.

--:-- dickens Top L1 (Fundamental) ————==—==———=——=——————--cooo—-- 4
¥ Describe key: I

Asking for help about a keyboard command.

16 | Chapter1: EmacsBasics

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Help

DExEHdB I BB RE XY
I o

a THE PERIOD

It was the best of times, it was the worst of times, it was the age of
{ wisdom, it was the age of foolishness, it was the epoch of belief, it
--:-- dickens Top L1 (Fundamental) ——————————————————————————————— 4
E-x 1 runs the command insert-file

which is an interactive compiled Lisp function in "files'.
It is bound to G-x i, <menu-bar: <files: <insert-file:.
(insert-file filename)

¥ TInsert contents of file filename into huffer after point.
-u: %% *Help* Top L1 (Help Wiew) ——-——=————m—m oo mmm oo
J¥ Tvype C-x 1 to remove help window. GC-M-v to scroll the help.

Emacs splits the screen to display help.

A few things to notice: the window is now split into two parts because you’re look-
ing at two separate buffers. Each buffer has its own mode line. The lower buffer is
the *Help* buffer; it contains the information about the insert-file command. Emacs
keeps the cursor in the dickens buffer because there’s no good reason for you to edit
the *Help* buffer.

You might also notice that in the text describing this command, Emacs calls the cur-
sor point. This term is used throughout Emacs to refer to the cursor; you’re bound to
encounter it.

To make the *Help* buffer disappear, press C-x 1 (we cover this command in
Chapter 4).

The Help Menu

You can also use the Help menu to access help commands quickly, and you can get
there either through the menu or through the lifesaver on the toolbar. On this menu,
you find options we’ve discussed here: Emacs Tutorial, Describe — Describe Key,
and Describe — Describe Function. It includes a host of interesting options, includ-
ing access to the Emacs frequently asked questions (FAQ) file, a new search feature,
and even an Emacs psychiatrist (you might tell it something like “Emacs is driving
me over the edge today”). There’s an interface to Info, Emacs’s online documenta-
tion. Simply choose Read the Emacs Manual to start Info.

In this section, we’ve given a very brief introduction to a few of the paths you can
take in the help system. There are many more help facilities; they are described thor-
oughly in Chapter 14. The help features we’ve described here should be enough to
get you started; if you want to learn more, jump ahead to Chapter 14.

GettingHelp | 17

Summary

Now you know the basic commands for starting and stopping Emacs and for working
with files. Chapter 2 builds on these commands to give you the skills you need for edit-
ing with Emacs. Table 1-4 summarizes the commands we covered in this chapter.

Table 1-4. File handling commands

Keystrokes Command name Action

CxCf find-file Find file and read it in a new buffer.

File — Open File

CxCv find-alternate-file Read an alternate file, replacing the one
read with C-x C-f.

Cxi insert-file Insert file at cursor position.

File — Insert File

CxCs save-buffer Save file.

File — Save (current buffer)

CxCw write-file Write buffer contents to file.

File — Save Buffer As

CxCc save-buffers-kill-emacs Exit Emacs.

File — Exit Emacs

Ch help-command Enter the online help system.

Chf describe-function Gives online help for a given command

Help — Describe Function name.

Chk describe-key Gives online help for a given keystroke

Help — Describe Key sequence.

Cht help-with-tutorial Start the Emacs tutorial.

Help — Emacs Tutorial

Chi info-goto-emacs-command-node Start the Info documentation reader.

Help — Browse Manuals

Problems You May Encounter

* Emacs doesn’t do what this book says or look like our screenshots. Make sure
that you have GNU Emacs 21.3.5 or later running by typing M-x version Enter
or selecting Help —» About Emacs. Read the section “Making Emacs Work the
Way You Want” in Chapter 2. You may need to install a graphical version of
Emacs if you are running in a terminal window; see Chapter 13 for details.

* The toolbar icons are completely different. The icons changed between Emacs
21.3.1 and Emacs 21.3.5. The older icons do the same thing; the newer ones are
substantially better looking and more intuitive. Upgrade Emacs using instruc-
tions in Chapter 13.

18 | Chapter1: EmacsBasics

* You can’t access menus using the mouse. Use the text-based menus instead by
pressing F10 or M-". Better yet, install a graphical version of Emacs using the
instructions in Chapter 13.

* PgUp doesn’t work properly when using text-based menus. PgUp is probably
bound to some application-specific function, such as scrolling in the Mac OS X
Terminal application. Press Shift-PgUp, F10, or M-" to access the menus.

* You can’t see a mode line or minibuffer. Your Emacs window is bigger than your
display. See Chapter 10 for information on how to get Emacs to start with a rea-
sonable window size. As a temporary workaround, resize the window. (On some
Windows systems, maximizing the window ironically makes it smaller, solving
the problem.)

Summary | 19

CHAPTER 2
Editing

Now that you know how to enter and exit Emacs as well as the basics of working
with files, it’s time to learn how to move around in and edit files. Emacs offers lots of
ways to move around in files. At first, you might find it confusing that there are so
many ways to do the same thing. Be patient—as you learn, the confusion will lessen,
and you’ll begin to appreciate the variety of Emacs commands. The more ways you
learn, the fewer keystrokes you’ll need to get to the part of the file you want to edit.

If you want to practice commands while you’re reading—which will help you learn
faster—start by typing a page or two from anything you happen to have handy; the
newspaper is fine. That will give you some text to work with as you learn the editing
skills described in this chapter. Don’t worry if you make mistakes; just keep on typ-
ing. You can correct any mistakes after you learn the basic editing skills outlined
here. Learning any editor is primarily a matter of forming certain finger habits rather
than memorizing what the book says. You will learn the right finger habits only if
you start typing.

When you are typing and you get to the right side of the display, you have two
options. You can press Enter to go to the next line, or you can keep typing. If you
type a long line and don’t press Enter, Emacs waits until you reach the end of the
display. Then it puts a curved arrow at the end of the line and one at the beginning
of the next line as a visual indication that the next line is a continuation of the previ-
ous line (see Figure 2-1). If Emacs is run in a nongraphical environment, a backslash
(\) is used instead.

Refill mode is a minor mode that keeps paragraphs neat as you edit them. It is not on
by default. Look at the mode line. If the word Refill appears, you are in refill mode
already. If not, you can turn it on for this buffer only by typing M-x refill-mode
Enter. If you decide that you don’t like refill mode, type M-x refill-mode Enter again.
This command is like a light switch: it toggles refill mode on and off.

You may decide that you want to enter refill mode automatically whenever you edit.
We'll describe how to do so at the end of this chapter.

20

hd emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DExEHdE S OB RE XE
e

THE PERIOD

It was the best of times, i1t was the worst of times, it was the age of wisdom, @
§it was the age of foolishness, it was the epoch of belief, it was the spoch of @
Sincredulity, it was the season of Light, it was the season of Darkness, it was @
% the spring of hope, it was the winter of despair. we had everything before us, @
Swe had nothing before us, we were all going direct to Heaven, we were all goingi@
& direct the other way--in short, the period was so far like the present period, @
%€ that some of its noisiest authorities insisted on its being received, for good@
& or for evil, in the superlative degree of comparison only

—-:** dickens Top LS (Text) ——————— oo oo o oo 4

24

® 06 Terminal — emacs-21.2.1 — 91x12

ile Edit Opt
I

THE PERIOR

It was the best of times, it was the worst of times, it was the age ofwwisdom, it was the A
age of foolishness, it was the epoch of belief, it wos the epoch of incredulity, it was thh
e gegson of Light, it was the segson of Darkness, it wos the spring of hope, it was the wih
nter of despoir, we hod evervthing before us, we had nothing before us, we were all going A
direct to Heawven, we were all ing direct the other way--in short, the period was so far |4
———¥¥_F1 dickens O = e e v
Auto-saving. ..done 4

Figure 2-1. Graphical versions of Emacs use curved arrows to indicate that a line is continued;
terminal versions use backslashes

In some contexts, refill mode can be annoying, and it is still a work in progress
according to the Emacs manual. You may prefer auto-fill mode. You enter it in the
same way; type M-x auto-fill-mode Enter. The word Fill appears on the mode line.

When you type paragraphs, auto-fill mode formats them. When you edit them, how-
ever, auto-fill mode does not automatically reformat them. You do that yourself
using the fill-paragraph command, M-q.

If you turn on refill mode and then decide to use auto-fill mode, you still have to turn
refill mode off explicitly by typing M-x refill-mode Enter. Otherwise, both modes
appear on the mode line, and refill mode continues its merry automatic reformatting
of paragraphs, ignoring the fact that auto-fill mode has been enabled.

Watch out for one important pitfall when reformatting paragraphs. In text mode, a
paragraph is any text that is indented or has a blank line before and after it. If you
have a file with no blank lines, Emacs thinks it is all one long paragraph. Typing M-q
takes all the text, ignoring line breaks, and makes it one long paragraph. This com-
mand is a particular problem if you have a data file, a program, or if you just prefer
to write files with no blank lines. Luckily, pressing C-_ or C-x u (both for undo)

Editing | 21

magically puts things back the way they were. If you regularly create files with no
blank lines, here are some suggestions:

* Instead of writing in text mode, use paragraph indent text mode. In this mode, a
line that starts with any blank space is a new paragraph. Type M-x paragraph-
indent-text-mode to start this mode; you’ll see Parindent on the mode line. See
Chapter 6 for more details.

* Use a specific mode rather than text mode for writing. For example, use HTML
mode or LaTeX mode, described in Chapter 8, for editing files of these types.
These special modes redefine what a paragraph means so that the fill-paragraph
command works correctly. Otherwise, these modes are very similar to text
mode.

* Instead of filling a paragraph, fill a marked section of text called a region (we’ll
discuss regions later in this chapter). Define the region you want to fill and press
M-x fill-region Enter. This command takes a region and formats each individual
paragraph within it.

Table 2-1 lists commands for filling text automatically and reformatting paragraphs
with auto-fill mode.

Table 2-1. Text filling and reformatting commands

Keystrokes Command name Action

(none) a refill-mode Toggle refill mode, in which Emacs automatically
reformats text.

(none) auto-fill-mode Toggle auto-fill mode, in which Emacs formats para-

Options — Word Wrap in Text graphs as you type them.

Modes

M-q fill-paragraph Reformat paragraph.

(none) fill-region Reformat individual paragraphs within a region.

Edit — Fill

a Remember that (none) in the first column means that you type M-x followed by the command name in the
second column, then press Enter to run the command. There are no default keystrokes. To use the refill-
mode command, type M-x refill-mode Enter.

Moving the Cursor

The easiest way to move the cursor is to click the left button on your mouse or to
press the arrow keys. However, it’s a hassle to reach for a mouse all the time. Learn
to use keyboard commands to move around so that you will ultimately achieve
blinding speed and maximum productivity in Emacs.

To use Emacs commands to move the cursor forward one space, type C-f (f for “for-
ward”). As you might guess, C-b moves the cursor backward. To move up, type C-p

22 | Chapter2: Editing

(for previous-line), and to move down, type C-n (for next-line). It’s easier to memo-
rize commands if you remember what the letters stand for.

Figure 2-2 illustrates how to move up, down, left, and right using Emacs commands.

Cp
(previous-line)

b Cf
(backward- (forward-
character) character)

Cn
(next-line)

Figure 2-2. Basic cursor motion

If you’re at the end of a line, C-f moves to the first character on the next line. Like-
wise, if you’re at the beginning of a line, C-b moves to the last character of the previ-
ous line. If there’s no place to go, Emacs beeps and displays the message Beginning
of buffer or End of buffer.

Other Ways to Move the Cursor

Now we’ll learn some more advanced ways to move the cursor. One common way is
moving forward and backward by word: M-f moves forward a word; M-b moves
backward a word. You can also move to the beginning or end of the line. C-a moves
you to the beginning of the line (just like a is the beginning of the alphabet). C-e
moves you to the end of the line. To move backward one sentence, type M-a; to
move forward one sentence, type M-e. To move forward a whole paragraph at a
time, type M-}; to move backward a paragraph, type M-{. If you’re in the middle of a
sentence or paragraph, moving back a sentence or paragraph actually takes you to
the beginning of the current sentence or paragraph.

Figure 2-3 uses a few paragraphs of Victor Hugo’s Les Misérables to show how you
can move the cursor more than one character at a time.

You may have picked up on a pattern here. Notice the difference between com-
mands starting with Ctrl and those starting with Meta. Ctrl commands generally
move in smaller units than their associated Meta commands. For example, C-b
moves the cursor backward one character, whereas M-b moves the cursor back one
word. Likewise, C-a moves to the beginning of the line, whereas M-a moves to the
beginning of a sentence.

Moving the Cursor | 23

M- Wbvward-word,
(backward-paragraph) (backward-word)

Initial cursor position

(forward -sentence) (end- Of line)
emacs@localhost. Iocaldomain i " Mi=1E3
File Edit Qptions Bufiers

DB xHE Y ROBREXE

fwhat name did you say?"
l"Jean Valjean. [fe i nvict/I

Blssistant keeper at Ehe BEoulonflga¥ieys. On leaving the galleys, thisf|
Valjean, as it appears, robbed & bishop, and then committed a highway
robbery on a little Savoyard.lFor eight years he has been out of the way
and could not be found, and I imagined--in a word--I did as I said.
Passion decided me, and I denounced you to the Prefect."

. Madeleine, who had taken up the charge book again, said, with a
tareless accent:
"And what was the answer you received?"
"That I was mad!"
"Well?"
"They were right."

M-a M-f
(backward-sentence) (forward-word)

Ca
(beginning-of-line)

twenty years ago when I was

7
-—:==| hugo a1l L4 75 S et o ooy et S g
I
M-}
(forward-paragraph)

Figure 2-3. Moving the cursor more than one character at a time

There’s one caveat about moving by sentence or paragraph. Emacs defines a sen-
tence pretty strictly. You need two spaces after the final punctuation mark, unless
you’re at the end of the line. If there’s only one space, Emacs won’t recognize it. Sim-
ilarly, moving backward and forward by paragraph involves understanding the
Emacs definition of a paragraph. To Emacs (and to most of us), paragraphs are either
indented with a tab or at least one space or have blank lines between them (block
style). You can change these definitions, but first you have to understand how to use
regular expressions, which are discussed briefly in Chapter 3 and in more depth in
Chapter 11. Chapter 10 discusses how to change variables.

If your file has page breaks in it, you can move to the next page or previous page by
typing C-x] (forward-page) or C-x [(backward-page). Similar to paragraph and sen-
tence movement, moving by page involves the Emacs definition of what a page is. A
variable called page-delimiter defines what constitutes a page break. If there are no
Emacs-recognized page breaks in the file, Emacs regards the buffer as one very long
page. In this case, the forward-page command takes you to the end of the bulffer,
and the backward-page command takes you to the beginning of the buffer.

24 | Chapter2: Editing

In text mode, a page break is a formfeed character that tells the printer to move to
the next page (to feed the next form or page through the printer, hence the term
formfeed) before continuing to print. If you are in text mode and you want to insert
page breaks in your file, type C-q C-l (the lowercase letter L). C-q is the quoted-
insert command. It tells Emacs to put a C-l control character in your file, rather than
interpreting C-1 as the recenter command. A C-1 character looks like two characters
("L), but it’s really only one. (Try to erase one using Del and see what we mean.)

Moving a Screen (or More) at a Time

Like other graphical applications, you can use the scrollbar to move around in
Emacs. Like most things in Emacs, in addition to using the mouse or scrollbar to
move around, you should learn Emacs’s own keyboard commands to maximize your
productivity.

If you want to page through a file one screen at a time, use the PgDown key or type
C-v. Emacs displays the next full screen from your file. It leaves a couple of lines
from the previous screen at the top to give you a sense of context. Likewise, pressing
M-v (or the PgUp key) shows you the previous screen. Together, M-v and C-v pro-
vide a convenient way to scroll through a file quickly.

Scrolling happens automatically if you type any motion command that takes you
beyond the limits of the text currently displayed. For example, if you are on the last
line of the screen and press C-n, Emacs scrolls forward. Similarly, if you are at the
top of the screen and press C-p, Emacs scrolls backward.

You often want to move all the way to the beginning or the end of a file. Type M->
or press End to go to the end of a buffer. To go to the beginning, type M-< or press
Home. It may help you to remember that > points to the end of the buffer, and <
points to the beginning of the buffer.

There are two more ways to move around that may come in handy. M-x goto-line
Enter n Enter moves the cursor to line n of the file. Of course, Emacs starts counting
lines from the beginning of the file. Likewise, M-x goto-char Enter n Enter goes to the
nth character of the file, counting from the beginning. In both cases, n is a number.

For programmers, these commands are useful because many compilers give error
messages like Syntax error on line 356. By using these commands, you can move
easily to the location of your error. There are some more sophisticated ways to link
Emacs with error reports from compilers and other programs. In addition, several
other cursor motion commands are applicable only when you are editing programs
(see Chapter 9 for details).

Moving the Cursor | 25

Repeating Commands

Now let’s learn some efficiency tricks. Emacs lets you repeat any command as many
times as you want to. First, you can repeat a command any number of times by
pressing M-n before the command, where n is the number of times you want to
repeat it. This command is called the digit-argument command.

You can give M-n a large argument if you want it to repeat the command many
times. For example, let’s say you are editing a large file of 1000 lines. If you typed
M-500 C-n, the cursor would move down 500 lines, to the halfway point in the file.
If you give M-n a larger argument than it can execute, it repeats the command as
many times as possible and then stops.

There’s another multiplier command you can use, too: C-u (the universal-argument
command). You can give C-u an argument just like you do M-n. Typing either M-5
or C-u 5 repeats the command that follows five times. But unlike M-n, C-u doesn’t
need an argument to repeat commands. With no argument, C-u executes the next
command four times. If you type C-u C-u, it executes the command 16 times. In this
way, you can stack up C-u’s to make commands execute many times: 16, 64, 256,
and so on.”

Centering the Display

C-l, the recenter command, puts the current line in the center of the window verti-
cally. This feature is useful if you're typing at the bottom or the top of the display.
Typing C-1 quickly moves the material that you care about to the middle of the dis-
play, where it is easier to see the full context.

C-l also redraws the display, if for any reason it appears obscured or contains ran-
dom characters. This doesn’t happen as often as it used to when we used terminals,
but it can be a handy thing to know about, especially if you find yourself using
Emacs remotely in a terminal interface.

Table 2-2 lists cursor movement commands. If the command is mnemonic, the word
to remember is given in italics.

Table 2-2. Cursor movement commands

Keystrokes Command name Action

Cf forward-char Move forward one character (right).
(€] backward-char Move backward one character (left).
Cp previous-line Move to previous line (up).

* Most often, you’ll use C-u as we’ve described here. However, it doesn’t always work as a multiplier; some-
times C-u modifies the command’s function. Later in this chapter, you’ll see one such case. However, if
you’re doing something where a multiplier makes sense, C-u is almost certain to work.

26 | Chapter2: Editing

Table 2-2. Cursor movement commands (continued)

Keystrokes Command name Action

Cn next-line Move to next line (down).

M-f forward-word Move one word forward.

M-b backward-word Move one word backward.

Ca beginning-of-line Move to beginning of line.

Ce end-of-line Move to end of line.

M-e forward-sentence Move forward one sentence.

M-a backward-sentence Move backward one sentence.

M-} forward-paragraph Move forward one paragraph.

M-{ backward-paragraph Move backward one paragraph.
Cv scroll-up Move forward one screen.

M-v scroll-down Move backward one screen.

Cx] forward-page Move forward one page.

Cx|[backward-page Move backward one page.

M-< beginning-of-buffer Move to beginning of file.

M-> end-of-buffer Move to end of file.

(none) goto-line Go to line n of file.

(none) goto-char Go to character n of file.

€ recenter Redraw screen with current line in the center.
M-n digit-argument Repeat the next command n times.
Cun universal-argument Repeat the next command n times (four times if you omit n).

Emacs Commands and Your Keyboard

You can access many Emacs commands by pressing standard keys on your key-
board, such as PageDown (to scroll down one screen) or Home (to go to the begin-
ning of a buffer). Figure 2-4 shows a sample keyboard layout and what the keys do.
Your keys may be in a slightly different place, but if you have a key with the same or
a similar name, it should work. We say “should” because there are situations in
which the keys won’t work—for example, if you use Emacs on a remote machine.
We recommend that you also learn the standard Emacs commands; they work on
any keyboard, and they are often easier to reach once you learn them.

Deleting Text

Before you start practicing deletion commands, you might want to know the undo
command, which is discussed fully later in this chapter. Typing C-_ or C-x u undoes
your last edit; typing undo again undoes the edit before that one, and so on.

Deleting Text | 27

(x6 Cx(M-x overwrite-mode M-< M-v
ok 4
F5

[Fl RIAB F4

elete insert. home up dear! = / *

page
delete; end = down

tab QW E R T_VY U 0 P T 708090 +
: M-> Cv
caps lock A S D F G H J K L o0 enter 5 6
< > ?
shift I X CLVv. BN M, . / T 18243
control alt SPACE BAR alt control « il .| enter
Meta Del Move in direction indicated.

Figure 2-4. Emacs commands and your keyboard

Emacs provides many ways to delete text. The simplest way to delete text is to press
the Del key, which deletes the character immediately to the left of the cursor. See
Figure 2-4 for possible locations of the Del key on your keyboard. It is sometimes
referred to as the Backspace key. Del is easiest to define by what it does: it deletes
the previous character. If you’re typing and you decide to erase the last character you
typed, what key do you reach for? That’s the key Emacs refers to as Del.

Emacs provides a number of other deletion commands—perhaps too many for your
taste, although you’ll eventually find a reason to use most of them. For example, C-d
(for delete-character) deletes the character under the cursor. The command for
deleting the next word is M-d (for kill-word). Once again, note how the Meta key
augments the command: C-d operates on a character, and M-d operates on a word.

Emacs has commands to delete the next or previous word, sentence, and paragraph.
By their names, you can guess what they do when you’re between words, sentences,
or paragraphs. If you’re in the middle of an entity, however, they do something a lit-
tle surprising: they delete a portion of the current word, sentence, or paragraph,
backward or forward depending on whether the command deletes previous or next.
For example, here’s how M-d acts differently depending on where the cursor is.

If the cursor is here: M-d makes this edit:

It was the wﬂrst of times It was the \NIO‘F times

Tt was the Borst of times It was the Iowc times

It was the wors of times It was the worslmc times

28 | Chapter2: Editing

Similarly, if you are in the middle of a word and ask Emacs to delete the previous
word (M-Del, for backward-kill-word), it deletes from the cursor position back to
the beginning of the current word.

If you want to delete an entire line or part of a line, use the command C-k (for
kill-line). This command deletes everything from the cursor to the end of the line.
Typing C-k on a blank line deletes the line itself. So, it usually takes two C-k’s to
delete a line: one to delete the text and one to delete the resulting blank line. If
you want to delete everything from the beginning of the line up to the cursor, try
the more complex incantation Meta - C-k (i.e., hold down Meta, followed by a
hyphen, and then C-k).

You can also use C-k to join two lines. If you're at the end of a line, C-k deletes the
newline character, effectively making two lines into one long line.

The Kill Ring

By now you may have noticed that some deletion commands in Emacs are called kill
commands, such as kill-region, kill-word, and the like. In Emacs, killing is not fatal,
but in fact, quite the opposite. Text that has been killed is not gone forever but is
hidden in an area called the kill ring. The kill ring, though it sounds somewhat like a
violent gang, is an internal storage area where Emacs puts things you’'ve copied or
deleted. Do not confuse the kill ring with the system clipboard, which allows for
copying and pasting between applications. We’ll cover how Emacs relates to the sys-
tem clipboard later in this chapter.

You can get back what you’ve deleted by typing C-y (for yank).” Conveniently, if you
kill several lines in succession, Emacs collects them into a single item and places the
whole unit into the kill ring; a single C-y command will bring everything back. In the
following example, we’ll use C-k four times to delete the first two lines of A Tale of
Two Cities. (Remember: the first C-k deletes the text; the second C-k deletes the
remaining blank line.) Then we’ll use a single C-y to bring everything back.

* You may be used to pressing C-v to paste in all applications if you are a Linux or Windows user. Emacs has
options to change its default paste, cut, and copy commands to the familiar C-v, C-x, and C-c. See “Making
Emacs Work the Way You Want” for details. Also, a quick warning to vi users who are learning Emacs: vi
also uses the term yank, but its meaning is almost the exact opposite. Don’t let this confuse you.

Deleting Text | 29

Initial state:

ocalhost.localdomain
File Edit Options Buffers Toaols Help

DExHBE S s8R XD

fit was the hest of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of helief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received, for
good or for evil, in the superlative degree of comparison anly.
-—:** dickens Top L1 (Text Fill)——————— oo m oo oo 4

T

The cursor is in upper-left corner.

Type: C-k C-k C-k C-k

ocalhost.localdomain

File Edit Options Buffers Tools Help

EBEEEEREREEEE

@5 the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heaven, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received, for
good or for ewil, in the superlative degree of comparison only.

—-—:** dickens Top L1 (Text Fill)—-——o-—om oo oo 4

You have deleted the first two lines with C-k.

30 | Chapter2: Editing

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

=T 5 =

DExHE b E XD
It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
=35 the epoch of ineredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had ewerything before us, we had nothing before us, we
were all going direct to Heawven, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received, for
good or for ewil, in the superlatiwve degree of comparison only.

|
——:** dickens Top L3 g e e =
% Mark set

You got everything back with a single command.

What exactly goes into the kill ring? Everything you delete with C-k in addition to
everything you delete with C-w and everything you copy with M-w (two commands
that you’ll learn shortly) go into the kill ring. Words, sentences, and paragraphs that
you delete with M-d, M-Del, and their relatives also go into the kill ring. In addition,
text that you delete with C-u followed by either Del or C-d goes into the kill ring.
About the only thing that Emacs doesn’t save in the kill ring is single characters,
deleted with Del or C-d. (If you need to, you can get this type of deletion back using
the undo command, bound to both C-_ and C-xu.)

Emacs is clever about what it puts into the kill ring: when it is assembling a big block
of text from a group of deletions, it always assembles the text correctly. For exam-
ple, you can type a few M-d’s, followed by some M-Del’s, with a couple of C-k’s
thrown in. When you type C-y, Emacs yanks all the text that you’ve deleted in the
proper order.

However, there’s one thing you have to watch out for. Emacs stops assembling these
blocks of text as soon as you give any command that isn’t a kill command. For exam-
ple, if you type C-k, then delete a single character with C-d, then type another C-k,
you’ve broken the chain. Emacs doesn’t consider deletion of a single character with
C-d a “kill” command; it’s just a deletion and it isn’t stored. In this case, you haven’t
made a single chain of kill commands; you’ve made two chains. Later, we’ll see how
to get the older killed text back.

Table 2-3 summarizes the commands for deleting, killing, and yanking text, includ-
ing options from the Edit menu.

DeletingText | 31

Table 2-3. Deletion commands

Keystrokes Command name Action

Cd delete-char Delete character under cursor.
Del delete-backward-char Delete previous character.

M-d kill-word Delete next word.

M-Del backward-kill-word Delete previous word.

Ck kill-line Delete from cursor to end of line.
M-k kill-sentence Delete next sentence.

C-x Del backward-kill-sentence Delete previous sentence.

Cy yank Restore what you've deleted.
Cw kill-region Delete a marked region (see next section).
Edit — Cut

(none) kill-paragraph Delete next paragraph.

(none) backward-kill-paragraph Delete previous paragraph.

Marking Text to Delete, Move, or Copy

What if the text you want to delete is just a phrase? Or half a paragraph? Or several
paragraphs? In Emacs, you select text by defining an area called a region. You can
mark regions with the mouse or by using the keyboard. What happens with the
mouse is a bit complicated, so we describe it later in this chapter, following our dis-
cussion of the system clipboard.

To define a region using the keyboard, you use a secondary pointer called a mark.
Some versions of Emacs display the mark on the screen; unfortunately, in GNU
Emacs, the mark is invisible.

You set the mark at one end of the region by pressing C-Space or C-@, then move
the cursor to the other end of the region. (The cursor is sometimes also referred to as
point. There is one minor but important difference between the cursor and the point,
however. The cursor is on top of a character; in Emacs, the point is actually in
between the character the cursor is on and the previous character. As we said, this
difference is minor, but it helps you to visualize where the cursor should be when
you mark a region.) Figure 2-5 illustrates point, mark, and region.

Let’s mark a sample region. In this example, we remove the phrase “it was the worst
of times.” First, we find the beginning of the phrase. Then we set the mark, move
forward to the end of the phrase, and cut.

32 | Chapter2: Editing

Use the set-mark command
to define the beginning of
aregion

@ localhost.localdomain

File Edit Options Buffers Tools Help

- = —
DExEHEBE S $BERE KT

It was the hest of times, it was the wgrot of times, 1t was the age of

wisdom, it was the age of foolishness, it was the epoch of belief, it
| was the epoch of incredulity, it was the season of Lighk, it was the
it was the spring of hope, it was the winter of
everything hefore us, we had nothing hefore us, we
going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period. that
some of its noisiest authorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.

This area is the region

Move cursor to the
end of the text to

7
be deleted = *+ dickens Top 14 {Text Fill) ‘

Figure 2-5. Point, mark, and region

Move to the beginning of “it” and press C-Space.

localhost.localdomain
File Edit Options Buffers Tools Help

=i Py -

DExHEA s BhE XD

[, It was the best of times, Ht was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had ewverything before ws, we had nothing before us, we
were all going direct to Heawven, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its beilng receiwved, for
good or for evil, in the superlatiwe degree of comparison only.

|
——:** dickens Top L1 T L T e e N g e |
% Mark set

Set the mark; Mark set appears in the minibuffer.

«:»

Move to the “i” in “it was the age of wisdom.” Because the point is really just before
the “i,” this placement will be just right.

Marking Text to Delete, Move, orCopy | 33

Move to the “i” in “it was the age of wisdom”

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

=T 5 =

DExHE s EhE XD
It was the hest of times, it was the worst of times, Ht was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had ewerything before uws, we had nothing before us, we
were all going direct to Heawven, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received, for
good or for ewil, in the superlatiwe degree of comparison only.

|
——:** dickens Top L1 = 5 5 st s e e e S0 |
T

The point is at the end of the region to be marked.

Now the region is marked. If the region is not highlighted, you’ll want to make sure it
is marked correctly before giving the delete command. Press C-x C-x (for exchange-
point-and-mark); this command swaps the locations of the mark and the point. If the
cursor moves to where you thought the mark was, the region is marked correctly.
Especially because you can’t see the mark, it’s a good habit to check its location using
C-x C-x before deleting a region. People who have used Emacs for years still forget to
set the mark and then make a deletion without knowing what they’ve just deleted.
(The undo command, bound to C-_ and C-xu, comes in handy in such a case.)

To cut the region, press C-w (for kill-region). (The scissors icon on the toolbar also
works.)

Press: C-w

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Help

DExHE s b E X-

[It was the best of times, Ht was the ags of

wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before ws, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noilsiest authorities insisted on its being received, for
good or for evil, in the superlatiwe degree of comparison only.

]
—-:** dickens Top L1 T N e B
I

C-w cuts the region.

34 | Chapter2: Editing

If you’re not sure of what you deleted, just press C-_ to undo it. The text is still
marked, and you can delete it again with C-w if you want to. To move text, mark it,
press C-w to cut the region, then move the cursor to the place you want to insert the
text, and press C-y. If you yank the text back into the wrong location, just type C-_ to
undo it, then move to the place you really wanted to put the text, and press C-y again.

When you’re defining a region, you normally set the mark at one end and then move
the cursor to the other end of the region. A few shortcuts are helpful in some of the
most common situations. To mark a paragraph, press M-h. This sets the mark at the
end of the paragraph and places the cursor at the beginning automatically. Similarly,
C-x h (for mark-whole-buffer) marks the entire buffer; the cursor goes to the begin-
ning, and the mark is placed at the end. Finally, C-x C-p marks the current page,
with pages being defined by the C-1 character if you are in text mode. Of course,
marking a paragraph, page, or buffer is usually only the prelude to some other opera-
tion, like killing (C-w).

Copying Text

To copy text, mark a region, then press M-w (for kill-ring-save; the toolbar icon
with two pieces of paper also runs this command). Move the cursor to the place
where you want to insert the copied text and press C-y. Copying text is exactly the
same as killing it, except that Emacs doesn’t delete anything. The text you have cop-
ied is placed in the kill ring, so you can use C-y to access it as often as you like.

One advantage to M-w is that it works on read-only files and buffers. For example, if
you wanted to create a file of Emacs hints, you could use M-w to copy some text
from online help into one of your buffers.

Here are the steps for some common deletion tasks.
To mark a region:

1. Move the cursor to the beginning of the area you want to delete.
2. Press C-Space. Emacs displays the message Mark set.

3. Move the cursor to the end of the region you want to delete.
To delete a region:

1. Mark the region to be deleted.

2. Press C-w to delete the region.
To move text:

1. Delete the text you want to move using the procedures for marking and deleting
a region.
2. Move the cursor where you want to insert the text.

3. Press C-y. Emacs inserts the text you deleted.

Marking Text to Delete, Move, orCopy | 35

To copy text:

1. Mark the region you want to copy.
2. Press M-w to copy the text.

3. Move the cursor where you want to insert the copied text and press C-y. Emacs
inserts the text you copied.

Recovering Earlier Deletions

Earlier we mentioned the kill ring, a temporary storage area in which Emacs saves
the stuff you delete. So far, we’ve assumed that you’re interested in resurrecting what
you’ve most recently killed. However, the kill ring does a lot more. It actually stores
your last 30 deletions. We've seen that C-y restores the text you deleted most
recently. Typing M-y deletes the text you just yanked and gets the next most recent
text from the kill ring.

Here’s how it works. In Table 2-4, assume that you’ve just killed the words “most
recent.” C-y retrieves these words from the kill ring. When you press M-y, Emacs
gets rid of “most recent” and gets the next entry from the kill ring (“second-last”).

Table 2-4. The kill ring in action

Keystrokes Action

Cy This was the most recentldeletion.
M-y This was the second-lastffdeletion.
M-y This was the third-lastfjdeletion.
M-y This was the fourth-lastldeletion.

You can keep on typing M-y, retrieving successively more ancient deletions, until
you reach the end of the kill ring (at which point it cycles back to the most recently
killed text; that’s why it’s called a ring).

Thirty deletions by default is a nice size—far more generous than most programs
offer. But you can enlarge or reduce the size of the kill ring if you wish, using a vari-
able called kill-ring-max. To experiment, give the command: M-x set-variable Enter
kill-ring-max Enter new-value Enter (where new-value is a number).

Selecting and Pasting

Using the menus, you can access text from the kill ring in a more straightforward
way: by choosing Edit -+ Select and Paste. A menu showing deletions appears, with
the most recent ones on top. To show you as many deletions as possible, each line in
the window represents a separate deletion. So if you’ve killed a large region, say 500
lines, you see only the beginning of the first line of that deletion, ellipses, and the end
of the deletion. Your selection is pasted into the buffer at the cursor position.

36 | Chapter2: Editing

Table 2-5 summarizes commands for working with regions.

Table 2-5. Commands for working with regions

Keystrokes Command name Action

C-@ or (- Space set-mark-command Mark the beginning (or end) of a region.

Cx Cx exchange-point-and-mark Exchange location of cursor and mark.

Cw kill-region Delete the region.

Gy yank Paste most recently killed or copied text.

M-w kill-ring-save Copy the region (so it can be pasted with C-y).
M-h mark-paragraph Mark paragraph.

CxCp mark-page Mark page.

Cxh mark-whole-buffer Mark buffer.

M-y yank-pop After C-y, pastes earlier deletion.

Emacs and the Clipboard

Emacs 21 plays well with the clipboard, though it still may not do what you want it
to in some cases. Let’s dig into this in a little more detail.

Placing Text on the Clipboard

By default, text that you cut or copy using icons on the toolbar or options on the Edit
menu is placed on the clipboard and is accessible to other applications.

Unfortunately, Emacs diverges by platform on this issue. Normally we save platform-
specific issues for Chapter 13, but cutting and pasting is such a vital operation that
we must describe the differences here.

On Windows and Mac OS X (but not on Linux) any text you cut or copy using C-w
or M-w is also copied to the clipboard.

On Windows and Mac OS X, simply selecting text with the mouse places it on the
clipboard. (This doesn’t work on Linux.). Most applications require you to highlight
text, then issue a copy command. Emacs doesn’t. Table 2-6 shows how this works
on various platforms.

Table 2-6. Selecting text with the mouse

Linux Windows Mac 0S X graphical Mac 0S X terminal
Sends to clipboard? no yes yes no?
Sends to kill ring? yes yes yes no

a You can make this happen if you highlight the text and then press 8-C. Simply high-
lighting the text doesn’t copy it to the clipboard.

Emacs and the Clipboard | 37

To send text to the clipboard on Linux, select it with the mouse (or mark it as a
region), then click on the cut or copy toolbar icon or menu option. You can also use
the clipboard-specific commands listed in Table 2-8 on any platform.

Retrieving Text from the Clipboard

As we mentioned, in other applications, you typically cut and paste by selecting text,
then issuing a copy command. How do you then paste that text into Emacs?

Not surprisingly, the paste icon on the toolbar and the associated option on the Edit
menu do this in most cases (see Table 2-7; Emacs on Mac OS X disables both the
icon and the option inappropriately; the associated command name clipboard-yank
works, however). C-y inserts text from the clipboard too. Additionally, an easy
mouse gesture works on most platforms: simply click the middle mouse button or
mouse wheel in the Emacs window to paste from the clipboard. The caveat here is
that you must have a mouse with a middle button.

Table 2-7. Pasting from the clipboard

Linux Windows Mac0S X graphical ~ Mac 0S X terminal
C-y pastes? yes yes yes no2
Toolbar paste icon pastes? yes yes no no
Edit — Paste option pastes? yes yes no no
Middle mouse button pastes? yes yes yes no
M-x clipboard-yank pastes? yes yes yes no

o

88-v passtes from the clipboard.

Another issue with cutting and pasting is encoding. Encoding is a complex topic in
Emacs; full Unicode support is slated for Emacs 22. At this point, we can only point
you to a variable that may help you resolve cut-and-paste related encoding issues:
set-clipboard-coding-system.

If you’re interested in the clipboard, you may want to change Emacs’ keys for cut-
ting and pasting to the more universal C-x, C-c, and C-v. See “Making Emacs Work
the Way You Want” later in this chapter for more details.

Table 2-8 summarizes clipboard-related commands.

Table 2-8. Clipboard commands

Keystrokes Command name Action

(none) clipboard-kill-region Cut region and place both in kill ring and on system clipboard.
(none) clipboard-yank Paste text from clipboard.

(none) clipboard-kill-ring-save Copy text to clipboard.

38 | Chapter2: Editing

Editing Tricks and Shortcuts

Now that you’ve learned the basics of editing—moving the cursor to the right posi-
tion, deleting, copying, and moving text—you can learn some tricks that make
editing easier.

Fixing Transpositions

The most common typo involves the transposition of two letters, and most typos are
noticed immediately after you make them. Pressing C-t transposes two letters, to put
them in the right order:

Before C-t After (-t
the best oftimsﬂ, it the best of timesl it

To transpose two letters, put the cursor on the second of the two letters to be trans-
posed. Press C-t. (If you often transpose letters, word abbreviation mode, discussed
in Chapter 3, cleans up typos automatically.)

You can also transpose two words, lines, paragraphs, or sentences. To transpose
two words, put the cursor between the two words and press M-t. After Emacs has
finished, the cursor follows the second of the two (transposed) words:

Before M-t After M-t
one threeftwo one two three]]

Interestingly, Emacs moves words, but not punctuation. Let’s say that two names are
reversed:

Before M-t After M-t
Charles, mickens Dickens, Charles]

To transpose two lines, put the cursor anywhere on the second of the two and press
C-x C-t. Emacs moves the second before the first:

Before C-x (-t After (-x G-t
second line firstline
fiirst line second line
third line Bhird line

Editing Tricks and Shortcuts | 39

Table 2-9 summarizes the transposition commands.

Table 2-9. Transposition commands

Keystrokes Command name Action

(-t transpose-chars Transpose two letters.

M-t transpose-words Transpose two words.
CxCt transpose-lines Transpose two lines.
(none) transpose-sentences Transpose two sentences.
(none) transpose-paragraphs Transpose two paragraphs.

Changing Capitalization

Mistakes in capitalization are also common and annoying typing errors. Emacs has
some special commands for fixing capitalization. To capitalize the first letter of any
word, put the cursor on the first letter and press M-c. To put a word in lowercase,
press M-1. To put a word in uppercase, press M-u. The key bindings here are mne-
monic: Meta followed by ¢ for capitalize, 1 for lowercase, and u for uppercase. Note
that if the cursor is in the middle of a word, Emacs takes action only from the charac-
ter under the cursor to the end of the word. You can easily use M-1 to lowercase the
second half of a word, and so on.

If you notice that the word you just typed is incorrect, you can use the same com-
mands prefaced by Meta- (press and hold Meta followed by a hyphen). This corrects
the previous word without moving the cursor. If the cursor is positioned in the mid-
dle of a word, using Meta- before a command causes it to work on the first part of
the word (the part preceding the cursor), rather than the part following the cursor.

For example, starting with abcdBfghij:

If you press: You'll get:
Meta - u abcdEFGHU
Meta - M-u ABCBfghij
M-c abcdEfghij]
Meta - M-c Abcdl¥fghij

Table 2-10 summarizes the capitalization commands.

Table 2-10. Capitalization commands

Keystrokes Command name Action

M-c capitalize-word Capitalize first letter of word.
M-u upcase-word Uppercase word.

M-I downcase-word Lowercase word.

40 | Chapter2: Editing

Table 2-10. Capitalization commands (continued)

Keystrokes Command name Action

Meta - M-c negative-argument; capitalize-word (apitalize previous word.
Meta - M-u negative-argument; upcase-word Uppercase previous word.
Meta - M-I negative-argument; downcase-word Lowercase previous word.

Overwrite Mode

You may be used to typing over old text rather than having to delete it. There is a
certain satisfaction in destroying some really bad text in this way. You can do this in
Emacs, too, by entering a minor mode called overwrite mode. When you’re in over-
write mode, any new text you type wipes out the text that’s underneath. When
you’re not in overwrite mode (i.e., in normal Emacs), any new text you type is
inserted at the cursor position and any subsequent text is pushed to the right. (Other
software may refer to this as insert mode; because it is the way GNU Emacs nor-
mally behaves, it doesn’t have a name here.)

To enter overwrite mode, press the Insert key.” Ovwrt should appear on the mode
line. If this doesn’t work (or if you don’t have an Insert key), type M-x overwrite-
mode Enter. You can turn off overwrite mode by typing M-x overwrite-mode Enter
again. Using Emacs’s command completion, simply type M-x ov and press Enter.
This is enough of a unique string to tell Emacs you want to toggle overwrite mode.
Completion, one of the best shortcuts in Emacs, is discussed further in Chapter 14.

Canceling Commands and Undoing Changes

Sometimes you start a command by accident or change your mind about it. Don’t
worry: with Emacs, you can quit in the middle or undo it.

Canceling Commands

When you want to cancel any command that’s in progress, press C-g. The word Quit
appears in the command area. This command is helpful when you are stuck in the
minibuffer and didn’t really mean to go there. Depending on what you were doing,
you may have to press C-g a few times.

Undoing Changes

What happens if you make a mistake while you’re editing? You can undo your
changes by pressing C-_ or C-x u (for undo; conveniently, the toolbar also has an

* On a Mac keyboard, we found that the Help key, to the left of Home, toggles overwrite mode.

Canceling Commands and Undoing Changes | 41

undo icon, a curved left arrow). By typing undo repeatedly, you can gradually work
your way back to a point before your mistake.” Although the undo command is very
powerful, saving your file frequently, if not compulsively, is nevertheless a good idea.
We usually save a file whenever we stop typing—even if only for a few seconds.
Train your fingers to press C-x C-s whenever you pause; it’s a good habit to form.

If you're used to typing C-z to undo, you can easily change Emacs’s behavior to
match your habits. See “Making Emacs Work the Way You Want” at the end of this
chapter for information on CUA mode.

What if you’d like to redo a command after you type undo? There is no formal redo
command, but you can use undo in the following way. Just move the cursor in any
direction, and type C-_ or C-x u again. Emacs redoes the last command you undid.
You can repeat it to redo previous undos.

Although undo is an important command, it can be slow if you want to undo a large
number of changes. Table 2-11 summarizes three methods for undoing changes and
circumstances in which you might want to use them.

Table 2-11. Methods for undoing changes

If you: Use this command:
Don't like the recent changes you've made and want to C-_orC-x u (undo)
undo them one by one

Want to undo all changes made since you last saved the file M-x revert-buffer Enter

Want to go back to an earlier version of the file (the fileasit C-x C-f filename~ Enter C-x C-w filename Enter
was when you started this editing session)

We’ve already talked about undoing changes with undo; next we describe how to
revert a buffer from a file and how to go back to an earlier version.

Reverting a Buffer from a File

If the undo command isn’t useful, there’s another way to restore a file to an earlier
state. If you want to get the file back to the state that is stored on disk, type M-x
revert-buffer Enter. Emacs asks the following question:

Revert buffer from file filename? (yes or no)

The filename is the name of your original file. Type yes if you want to restore the file,
or no if you've changed your mind. Emacs copies the file stored on disk into the
buffer, conveniently forgetting everything that happened since the last time you

* If you find that you repeat the undo command frequently, it’s worth getting fluent with C-_. It’s true that
this requires holding down Ctrl and Shift at the same time, but once you’ve got that down, pressing _ repeat-
edly is much easier than typing C-x u again and again.

42 | Chapter2: Editing

saved the file. Although this command is called revert-buffer, note that it can revert
only buffers associated with files.

Going Back to a Previous Version: Backup Files

The first time you save a file during an editing session, Emacs creates a backup file. If
something disastrous happens, and the other techniques for undoing changes won’t
help you, you can always return to the backup file. The name of the backup file is the
same as the name of the file you're editing, with a tilde (~) added. For example, if
you are editing the file text, the backup file is text~.

Emacs doesn’t provide any special commands for restoring a buffer from the backup
copy. The easiest way to do this is to edit the backup copy and then save it as the real
file. For example, if you were working with a file called text, you could: exit Emacs
by typing C-x C-c, then start Emacs again by typing emacs text~. After the backup
file is displayed, save it as the real file by typing C-x C-w text Enter. As a safeguard,
Emacs asks you before it writes over the original file:

File text exists; overwrite? (y or n)
Type y to overwrite the original file with the backup file.

GNU Emacs also has a numbered backup facility. If you turn on numbered backups,
Emacs creates a backup file (with the suffix ~n~) every time you save your file. n
increments with each successive save. If you are nervous about deleting older ver-
sions, it might be worth using: you can keep all of your old versions forever, if you
want to. However, numbered backups can also waste disk space; a happy medium
may be to tell Emacs to keep the last n versions, where 7 is the number of versions
you want to keep. The variables that control numbered backups are described in
Appendix A. If you are interested in full-blown version control, check out VC mode,
discussed in Chapter 12. Table 2-12 summarizes the commands for stopping com-
mands and undoing changes.

Table 2-12. Stopping and undoing commands

Keystrokes Command name Action

Cg keyboard-quit Abort current command.

Cxu advertised-undo2 Undo last edit (can be done repeatedly).

C_ undo Undo last edit (can be done repeatedly).

Edit — Undo

(none) revert-buffer Restore buffer to the state it was in when the file was last

saved (or auto-saved).

a There is no real difference between undo and advertised-undo. They work the same way.

Canceling Commands and Undoing Changes | 43

Recovering Lost Changes

We’ve just discussed how to eliminate changes you don’t want to keep; getting back
changes you’ve lost is a different kind of problem. You might lose changes if the
power goes out momentarily or if the computer you’re working on suddenly freezes
or is turned off accidentally. You might also lose changes if you exit Emacs abnor-
mally. Luckily, Emacs, being the watchful editor that it is, saves your file for you
every so often in auto-save files. If you watch carefully, you’ll see the message Auto
saving in the minibuffer from time to time. Using auto-save files, you can get back
most, if not all, of your changes. The name of an auto-save file is the same as the
name of the file you are editing, with a sharp (#) added to the beginning and the
end. For example, if you are editing the file text, its auto-save file is #text#.

To recover text from an auto-save file, type M-x recover-file Enter. Emacs opens a
window that lists both the file and its associated auto-save file so that you can com-
pare the time at which they were created, their size, and so forth. Emacs asks you the
following question:

Recover auto-save file #text#? (yes or no)

Type yes to confirm that you want to copy the contents of the auto-save file into the
current file or no if you change your mind. (If you are unsure, you might want to use
C-x C-f to read the auto-save file #text# into a buffer first and look it over carefully
before using the recover-file command. If you really want to compare the differ-
ences between the two versions, see “Comparing Files Between Windows” in
Chapter 4.)

When does Emacs create auto-save files? Emacs creates an auto-save file every few
hundred keystrokes or if Emacs is terminated abnormally.” You can change the fre-
quency with which Emacs creates auto-save files by changing the variable auto-save-
interval. By default, Emacs creates an auto-save file every 300 keystrokes. For more
information on changing variable values, see Chapter 10.

There’s one more important fact to know about Emacs and auto-save files. If you
delete a large portion of a file, Emacs stops auto-saving the file and displays a mes-
sage telling you so. To make Emacs start auto-saving again, save the file with C-x C-s
or type M-1 M-x auto-save Enter (that’s the number 1).

Now you’ve learned enough commands for most of the editing you’ll do with Emacs.
At this point, you may want to learn how to make Emacs turn on certain features like
auto-fill mode automatically, so you don’t have to turn them on every time you enter
Emacs. The next section provides a brief introduction to customization; this topic is
covered in much greater detail in Chapter 10.

* We should say that Emacs tries to do this. In some cases, Emacs can’t, and there is really no guarantee. Power
surges and OS crashes are examples of times where things happen so fast that Emacs may not be able to cre-
ate an auto-save file. But we are surprised at how often it manages to do so.

44 | Chapter2: Editing

Making Emacs Work the Way You Want

If you’ve been reading straight through this book, you may have started a list of
things you’d like to change about Emacs, such as

* Hiding the toolbar

* Changing Emacs cut and paste commands to C-x, C-c, and C-v

* Turning on text mode and a fill mode so Emacs does word wrap

* Changing the way some of the keys work
We’re going to tell you how to give Emacs the to-do list, a list of options to turn on
each time you enter Emacs. These options are defined in an initialization file called
.emacs. Initialization files run automatically. Some run when you start up your
computer. Others, like .emacs, run when you start up an associated software pro-
gram. So .emacs runs automatically when you start Emacs and turns on whatever

options the file defines. Emacs doesn’t need this file to run; its only purpose is to
make Emacs work the way you want it to.

The .emacs file consists of Lisp statements. If you’re not a Lisp programmer, you can
think of each line as an incantation that follows a certain pattern; you need to type it
exactly.

Emacs now has another way to handle customization: an interactive interface called
Custom that writes Lisp for you and automatically inserts it in your .emacs file. The
Custom interface is discussed in Chapter 10, but we’ll show you an even faster
method for common options.

When you want to add a line to your .emacs file directly, take these steps:

. Enter Emacs (if you’re not already there).

. Type C-x C-f ~/.emacs Enter.

. Type the line to be added exactly as shown in this book and press Enter.
. Press C-x C-s to save the .emacs file.

. Press C-x C-c to exit Emacs.

AN U A W N

. Restart Emacs to have the line take effect.

If you make a minor typing mistake (such as forgetting a single quotation mark or a
parenthesis), you are likely to get an error message that says Error in init file
when you restart Emacs. Simply edit the .emacs file again, checking the line you
added against the place you got it from, whether from this book or another user’s .
emacs file. Usually, you can find the error if you look hard enough; if not, find some-
one who has a .emacs file (and preferably understands Lisp) and ask for help. Make
the changes, save the file, and restart Emacs.

What if you make a change that essentially keeps Emacs from being able to start?
You can still exit Emacs, rename the file, edit it, then save it as .emacs and try again.

Making Emacs Work the Way You Want | 45

Hiding the Toolbar

New users may find the toolbar helpful. Others may not. It’s easy to hide it by select-
ing Options - Show/Hide — Toolbar, and then Options — Save Options.

When Emacs sets options for you through Custom (and this is what it is doing
even when you use the Options menu), it writes your .emacs file. If you already
have a .emacs file, it appends to it. Custom essentially groups all of its settings in
one part of the file, and it is commented to indicate that you should not change it
manually. Here’s the .emacs file that we created by selecting this option:
(custom-set-variables
;3 custom-set-variables was added by Custom.
55 If you edit it by hand, you could mess it up, so be careful.
53 Your init file should contain only one such instance.
53 If there is more than one, they won't work right.
'(tool-bar-mode nil nil (tool-bar)))
(custom-set-faces
;3 custom-set-faces was added by Custom.
55 If you edit it by hand, you could mess it up, so be careful.
55 Your init file should contain only one such instance.
53 If there is more than one, they won't work right.

)
This may seem a bit bulky, but as we’ll see in the next section, Emacs adds this section
only once and then augments it when you set more options either through the options
menu or directly through the Custom interface. Also note that this auto-generated Lisp
is certainly less clean than Lisp statements you’ll typically see in .emacs files. That’s
another reason not to edit Custom’s work directly.

Turning On CUA Mode for C-x, C-¢, and C-v
to Cut, Copy, and Paste

If you’re new to Emacs, you might be used to the Common User Access (CUA) con-
ventions for cutting, copying, and pasting, C-x, C-c, and C-v respectively. You might
reach for C-z for undo. CUA mode was once an add-on mode that you had to install
separately, but it became so popular that it is now part of Emacs. It’s coded in a
clever way that doesn’t interfere with Emacs keystrokes that are prefixed with C-x
and C-c. Details on CUA mode can be found in Chapter 13.

You can turn this feature on through the Options menu to try it out. Simply choose
Options — C-x/C-¢/C-v cut and paste (CUA). After you select this option, a check
mark appears next to it on the Options menu. To keep it for subsequent sections,
select Save Options from the Options menu. Emacs writes your .emacs file for you. If
you turned off the toolbar and then set this option, your .emacs file would look like
this (note that the line relating to CUA mode is bold so you can see the difference
from the previous example):

(custom-set-variables
;5 custom-set-variables was added by Custom.

46 | Chapter2: Editing

55 If you edit it by hand, you could mess it up, so be careful.
55 Your init file should contain only one such instance.
55 If there is more than one, they won't work right.
'(cua-mode t nil (cua-base))
'(tool-bar-mode nil nil (tool-bar)))
(custom-set-faces
;5 custom-set-faces was added by Custom.
53 If you edit it by hand, you could mess it up, so be careful.
55 Your init file should contain only one such instance.
55 If there is more than one, they won't work right.

)
Interestingly, Emacs happily writes the .emacs file even if it is open at the time. You
can watch Emacs change the file if you have it open when you choose Save Options.

Turning On Text Mode and Auto-Fill Mode Automatically

To make text mode the default major mode and start auto-fill mode automatically
each time you enter Emacs, add these lines to your .emacs file:

(setq default-major-mode 'text-mode)

(add-hook 'text-mode-hook 'turn-on-auto-fill)
The first line tells Emacs to make text mode the default major mode; in other words,
“Turn on text mode unless I tell you otherwise.” The second line turns on auto-fill
mode whenever you are in text mode. Alternatively, selecting Options - Word Wrap
in Text Modes, and then Options — Save Options adds auto-fill mode to your .emacs
file directly. It doesn’t make text mode the default major mode, however.

If you prefer refill mode, replace the second line of code with this line:

(add-hook 'text-mode-hook (lambda () (refill-mode 1)))

Remapping Keys

Another major use of the .emacs file is to redefine things about Emacs that irritate
you. You may have ergonomic concerns about Emacs; more than one person has
aggravated carpal tunnel syndrome using the default bindings. You may simply be
used to reaching for certain keys for certain functions and would rather change
Emacs than your habits. Whatever the case, this section gives a brief introduction to
key remapping; for more details, see Chapter 10.

If you use the default bindings (rather than CUA mode), you may use C-x u for
undo.” (Undo is such a common command that it’s easy to type C-x C-u by mistake
when you undo repeatedly. Unfortunately, C-x C-u is a disabled command for

* You could use C-_ for undo instead and then you wouldn’t need to read this section. We recommend that
you read it anyway because you might find another annoying key mapping that you want to change and this
section tells a bit about how to do so.

Making Emacs Work the Way You Want | 47

upcase-region. If you type C-x C-u, an annoying message about enabling the com-
mand pops up.

If you don’t anticipate a big need for upcasing regions, you can redefine C-x C-u so
that it also runs undo. To do so, add this line to your .emacs file:

(define-key global-map "\C-x\C-u" 'undo)
After making this change, typing C-x C-u runs undo, just as C-x u does.

Emacs customization is extremely powerful, and you can make Emacs work just the
way you want it to. A far more extensive treatment of customization is found in
Chapter 10. This brief introduction is meant to whet your appetite and to make it
possible for you to add lines to your .emacs file as we mention potential customiza-
tions throughout the book.

The next chapter covers topics such as the many searches offered by Emacs, includ-
ing query-replace, as well as spell checking and word abbreviation mode (often used
to correct typos automatically). If you want to learn about these features, go on to
the next chapter. From here on, you can take a selective approach to reading this
book, picking and choosing whatever you want to learn about; you don’t need to
read the rest of the book sequentially.

Problems You May Encounter

* You get an error message when you start Emacs after changing the .emacs file.
The message appears only briefly; press M-p to view it again. Edit your .emacs
file, checking the lines you added carefully against their source for minor typo-
graphical errors. Something as simple as a missing hyphen or apostrophe can
cause this error. Fix the error, save the file, exit Emacs, and reenter. In extreme
cases (the .emacs file is so messed up that Emacs won’t even let you edit it), exit
Emacs, rename the .emacs file, and then start Emacs and edit it again to fix it.
Rename it back to .emacs and start again.

* Paragraphs are not reformatted properly. This seems to relate to window size.
Try resizing the window horizontally until paragraphs format properly.

48 | Chapter2: Editing

CHAPTER 3
Search and Replace

The commands we discussed in the first two chapters are enough to get you started,
but they’re certainly not enough to do any serious editing. If you’re using Emacs for
anything longer than a few paragraphs, you’ll want the support this chapter
describes. In this chapter, we cover the various ways that Emacs lets you search for
and replace text. Emacs provides the traditional search and replace facilities you
would expect in any editor; it also provides several important variants, including
incremental searches, regular expression searches, and query-replace. We also cover
spell-checking here, because it is a type of replacement (errors are sought and
replaced with corrections). Finally, we cover word abbreviation mode; this feature is
a type of automatic replacement that can be a real timesaver.

Different Kinds of Searches

While you’re editing, you frequently want to find something you’ve already typed.
Rather than hunt through the file trying to find what you’re looking for, virtually all
editors provide some kind of search feature that lets you look for a particular text
string. Emacs is no exception to the rule. It supplies a search command—in fact, it
provides a dizzying array of search commands. Here’s a quick summary of the differ-
ent kinds of searches that are available:

Simple search
You give Emacs a search string, and it finds the next occurrence. You will find
this search in almost any editor.

Incremental search
With incremental search, Emacs starts to search the file as soon as you type the first
character of a search string. It continues to search as you type more characters.

Word search
A word search is like a simple search, except that Emacs searches only for full
words and phrases. For example, if you are searching for the word hat, you don’t
have to worry about finding the word that. A word search is also useful when
you need to find a phrase that is spread across two lines.

49

Regular expression search
To search for patterns, you can use a regular expression search. For example, if
you wanted to find all instances of B1 and B2, you could search for them using
the regular expression B[12]. However, regular expressions can be extremely
complex. We'll give a brief introduction to this topic here; it is discussed more
fully in Chapter 11.

Incremental regular expression search
This search procedure is a combination of an incremental search and a regular
expression search.

You can search forward or backward. Searches can be either case-sensitive, meaning
that Emacs considers upper- and lowercase letters to be different (i.e., the words This
and this are different) or case-insensitive, in which upper- and lowercase are not dif-
ferentiated (i.e., This and this are equivalent). By default, searches are case-insensi-
tive, with upper- and lowercase letters considered to be the same. One exception: if
you type any uppercase letters, Emacs makes the whole search string case-sensitive;
it assumes you are looking for something precise since you’ve made the extra effort
to type some letters in uppercase.

Replacement operations are closely related to searches. As with searches, Emacs
offers you several different flavors:

Simple search and replace
In this procedure, Emacs replaces all occurrences of one string with another.
Usually, this is too radical a solution and can have unintended results. Try
query-replace instead.

Query-replace
With query-replace, Emacs conditionally replaces a string throughout a file.
Emacs finds all occurrences of the search string, and for each one it asks you
whether or not to perform the replacement. This type of replacement is useful if
you need to change some, but not all, instances of a word or phrase throughout
a file.

Regular expression replace
Regular expression replacement uses the powerful pattern matching facility of
the same name to find strings and replace them.

So now you know what you’ll be looking at. Don’t be intimidated by the wealth of
searches that are available. In practice, you’ll probably settle on one search com-
mand and one replace command and use these for 99 percent of your work. For
example, we use incremental search and query-replace most of the time. If you’re a
writer, you may use word search all the time; if you’re a programmer, you might
want a regular expression search. If you're just beginning, you may want to learn
incremental search and read the rest of this chapter later. However, if you know
what’s available, you’ll be able to make use of the other search commands when they
become useful.

50 | Chapter3: Searchand Replace

Incremental Search

Incremental search starts to work from the moment you type the first character of
the search string. Many users like the efficiency of incremental searches, and they
like the highlighting as well. Emacs highlights all occurrences of the search string in
aqua blue (if your display supports it) and uses purple to highlight the string at the
cursor position (the current match).

Type: C-sm

emacsd localhost.localdomain
File Edit Options Buffers Tools Help

DEx HE 9 BB E K-
Bde
1

means

method
3
meteor

neter
5
--:-- rwords all 11 (Text Fill Isearch)------——————-—oooooo oo |
J¥ I-search: m

Emacs highlights all the words that start with m.

To start an incremental search, type C-s and then type the text you want to find.
Emacs temporarily enters Isearch mode. Notice how this search works: Emacs
looks for each character as soon as you type it. For example, if you are searching
for the word meter, in an incremental search Emacs finds the next m as soon as you
type the m; it finds the next me as soon as you type the e; it finds the met as soon
as you type the t; and so on. Sooner or later, you either find what you want, or
Emacs is unable to find anything. If you find what you want, press Enter; doing so
stops the search at the current place in the file. If Emacs can’t find anything that
matches your search string, it prints the message Search failed at the bottom of
your screen and then it beeps.

Here’s what happens when we search for the word meter; the numbers show how the
cursor moves with each new letter in the search string.

Different Kinds of Searches | 51

Type: C-s meter

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

DEx HE s 0D & XT
nade

1
MERNS

method

——:-- rmwords nll 19 (Text Fill Isesrch)------————------oo— |
|% TI-search: meter

Emacs moves the cursor from one position to another as you type the letters of the
search string.

In this incremental search, Emacs moves the cursor from position 1 to 2, to 3, and
so on, as you type the search string meter. Also, note that Isearch appears on the
mode line.

What happens if you find the string you’re looking for but not the right occurrence
of the string? Let’s say you’re searching for the word eschatology and you find the
word, but you’re still not in the right place. Simply press C-s again to find the next
occurrence of the current search string. Emacs uses the same search string; you don’t
have to retype it.

Remember to press Enter when you’ve found the text you want. Forgetting to stop
the search (by pressing Enter or with any other cursor movement command) is a
common mistake: you type a few things, and suddenly Emacs is off looking at some
completely different part of the file. What has happened? Emacs thinks you’re still
searching, and it has just added the characters you’ve typed to the search string.

If you type a letter in your search string incorrectly, press Del: Emacs moves back to
the first instance of the reduced string in the file. If you keep pressing Del to delete
characters from the search string, you’ll see Emacs cycle back through the file to
previous matches.

To cancel a search (that is, to give up searching), type C-g. This command brings you
back to the place where the search began.

To search backward through a file, use C-r, which works exactly like C-s except that
it searches in the opposite direction. It puts the cursor at the beginning of the text
you find. Just as you can do when repeating C-s, you can press C-r to make the
search go in the other direction without retyping the search string.

52 | Chapter3: Searchand Replace

To avoid typing your search string, you can copy text from the buffer into the search
string. To copy text from the cursor position through the next space or punctuation
mark into the search string, type C-s C-w (it may help to think of C-s C-w as “search
a word”). To copy text from the cursor to the end of the line into the search string,
type C-s C-y. Notice that the text that is yanked is always converted to lowercase;
this conversion ensures that the search will be case-insensitive. You can also copy
text from the kill ring to the search string by typing C-s M-y. After you’ve given this
command, you can press M-p to see previous items from the kill ring. M-n takes you
to the next item if you’ve gone back with M-p.

Once you’re in an incremental search, certain keys (such as Enter and Del) have dif-
ferent functions than they normally do. This situation may sound confusing, but it’s
actually fairly easy to get used to. Table 3-1 shows a summary of key functions dur-
ing incremental search.

Table 3-1. Incremental search commands

Keystrokes Command name Action

C-s isearch-forward Start incremental search forward; follow by search

Edit — Search — Incremental string. Also, find next occurrence (forward) of search

Search — Forward String string.

Cr isearch-backward Start incremental search backward; follow by search

Edit — Search — Incremental string. Also, find next occurrence (backward) of

Search — Backward String search string.

Enter isearch-exit In an incremental search, exit the search.

()] keyboard-quit In an incremental search, cancel the search.

Del isearch-delete-char In an incremental search, delete character from
search string.

CsCw isearch-yank-word Start an incremental search with the word the cursor
is on as the search string.

CsCy isearch-yank-line Start an incremental search with the text from the
cursor position to the end of the line as the search
string.

CsM-y isearch-yank-kill Start an incremental search with text from the kill
ring as the search string.

CsCs isearch-repeat-forward Repeat previous search.

CrCr isearch-repeat-backward Repeat previous search backward.

Simple Searches

Emacs also offers a simple, or nonincremental, search. To use a more straightfor-
ward search, type C-s Enter. Type the search string, press Enter, and Emacs begins
the search. Simply press C-s again to repeat the search. To start a nonincremental
search backwards through the file, press C-r Enter. Again, you type the search string
and press Enter to begin the search.

Different Kinds of Searches | 53

The search icon on the toolbar (a magnifying glass over paper) and the Edit - Search
— String Forward option run the same kind of a search. The prompt is slightly differ-
ent. C-s Enter prompts you with Search: in the minibuffer while the toolbar icon and
the menu option prompt with Search for string:. This is a minor difference; the
searches are virtually identical otherwise.

Table 3-2 summarizes the simple search commands.

Table 3-2. Simple search commands

Keystrokes Action

C-s Enter searchstring Enter Start nonincremental search forward.
Edit — Search — String Forward

Cs Repeat search forward.

C-rEnter searchstringEnter Start nonincremental search backward.

Edit — Search — String Backwards
Cr Repeat search backward.

Word Search

If you’re searching for a phrase and you know it’s in the file but you can’t find it with
incremental search, try word search. (You probably can’t find your phrase with
incremental search because the phrase has a line break in it.) Word search is a nonin-
cremental search that ignores line breaks, spaces, and punctuation. It also requires
that your search string match entire words in the file.

To do a word search, type C-s Enter C-w (for word-search-forward). The prompt Word
search appears in the minibuffer. (Don’t be put off by the prompts that appear along
the way: you’ll see an I-search prompt after typing C-s and a Search prompt after
pressing Enter. Ignore these.) Type the search string and press Enter. Emacs searches
for the given string. To do a word search backwards, type C-r Enter C-w instead. For
example, assume that you have the following text, with the cursor at the beginning:

He said, "All good elephants are wise, aren't they?"

She answered, "Some are smarter than others, but we

think this is socially conditioned."
The command C-s Enter C-w they she Enter positions the cursor after the word She.
This command looks complicated, but it’s really nothing more than a word search
(C-s Enter C-w) for the word they, followed by the word she. It ignores the punctua-
tion (?”) and the newline between they and she.

Assume that you’re looking for the word the. You don’t want to bother with thence,
there, theater, thesis, blithe, or any other word that happens to contain the letters the.
In this situation, neither an incremental search nor a simple search is very useful—
you need a word search. If you’re writing a paper, word search is often exactly what
you need. It is the only one of the three basic search commands that allows you to
find what you want even if the phrase is split between two lines.

54 | Chapter3: Searchand Replace

Now that you’ve seen the three most commonly used searches, you might want to
experiment and see which you find most useful.

Search and Replace

Search and replace definitely go together, like coffee and cream. Let’s say you’re
working on a new software application and at the last possible moment, the Market-
ing Department decides to change the product’s name.

Tere’s a press release for Whirligig, an email service that periodically reminds you to
make healthy lifestyle changes like exercising, drinking water, and taking vitamins.
The level of harassment or, as the marketing department says, encouragement, can
be set by the user. Whirligig isn’t really the most descriptive name, so at the last
minute the Marketing Department changes it to HealthBug.

Simple Search and Replace Operations

Assume you’re in the situation we just described. You want to replace every occur-
rence of one string with another. You know that Whirligig is never correct, and there
is absolutely no ambiguity about how you want to replace it. When you want to
replace every instance of a given string, you can use a simple command that tells
Emacs to do just that. Type M-x replace-string Enter, then type the search string and
press Enter. Now type the replacement string and press Enter again. Emacs replaces
all occurrences in the file from the cursor position onward. If you want to search and
replace throughout the file, press M-< to go to the beginning of the file before typing
this command. Here’s a quick example of using replace-string.

Initial state:

emacs localhost.localdomain
File Edit Options Buffers Tools Help

DExEHE S $OHQE XY

Let Whirligiglhelp you improwve your quality of life. Whatever your
health goals, Whirligig can send reminders by email or cell phone text
message reminding you to take medication, exercise, drink 64 ounces of
water, or work on your stress lewel., Vou set the frequency of
reminders, and let Whirligig spur you on to mest your goals.

Keep your New Tear's resolutions with Whirligig!

7
--:-- PRdescription A1]1 L1 e —_— |

I

Whirligig appears four times, but the cursor is positioned after the first instance.

Now we’ll do the replacement.

Searchand Replace | 55

Type: M-x replace-string Enter Whirligig Enter HealthBug Enter

emacs® localhost.localdomain
File Edit Options Buffers Toaols Help

DExHE S $ 0D RE XT

Let Whirligig help you improwe your quality of life. Whatewer your
health goals, HealthBug can send reminders by email or cell phone text
message reminding you to take medication, exercise, drink 64 ounces of
water, or work on your stress level. You set the frequency of
reminders, and let HealthBug spur wou on to meet wour goals.

Keep your New Tear's resolutions with HealthBugfl

-—:** PRdescription 211 L7 i] B et bt o S i o |
% EReplaced 3 ocourrences

Emacs replaces all instances from the cursor position onward.

The replacement occurs only from the cursor position onward; Whirligig in the first
sentence is still incorrect. We’ll work with this example again in a moment.

Query-Replace

Few search and replace situations are as straightforward as those we’ve described.
Often you’re not sure that you want to replace every appearance of your search
string: a global replacement can be reckless. If you want to decide whether to replace
the string on a case-by-case basis, use a query-replace, which allows you to change a
string conditionally throughout a file. After Emacs finds an occurrence of the search
string, it asks whether it should replace it, and you respond accordingly.

To use query-replace, go to the beginning of the buffer using M-< and then type M-%.
The prompt Query replace: appears in the minibuffer. Type the search string and
press Enter. Now this appears:

Query replace searchstring with:

Type the replacement string and press Enter. So far, this procedure is almost identi-
cal to a replace-string operation; only the prompts are different.

Emacs now searches for the first occurrence of the search string. When it finds one, a
new prompt appears:

Query replacing searchstring with newstring

Before performing the replacement, Emacs waits for a response to tell it what to do.
Table 3-3 lists the possible responses and their results.

Table 3-3. Responses during query-replace

Keystrokes Action
Spaceory Replace searchstring with newstring and go to the next instance of the string.

56 | Chapter3: Searchand Replace

Table 3-3. Responses during query-replace (continued)

Keystrokes Action
Del orn Don't replace; move to next instance.
Replace the current instance and quit.
, Replace and let me see the result before moving on. (Press Space ory to move on.)
! Replace all the rest and don't ask.

A Back up to the previous instance.

Enterorq Exit query-replace.

E Modify the replacement string.

Cr Enter a recursive edit (discussed in detail later).

Cw Delete this instance and enter a recursive edit (so you can make a custom replacement).
C-M-c Exit recursive edit and resume query-replace.

C] Exit recursive edit and exit query-replace.

This list seems like a lot of keystrokes to remember, but you can get away with
knowing two or three. Most of the time you’ll respond to the prompt by pressing
Space, telling Emacs to perform the replacement and go on to the next instance, or n
to skip this replacement and go on to the next instance. If you’re not too sure what
will happen, enter a comma (,); Emacs makes the replacement but doesn’t go on
until you press Space. After performing the first few replaces, you may realize that
there’s no need to inspect every change individually. Typing an exclamation mark (!)
tells Emacs to go ahead and finish the job without bothering you anymore. If you
remember these keystrokes, you’re all set.

How does this work in practice? Let’s revisit our previous example, assuming that we
want to change Whirligig to HealthBug throughout (and that we didn’t save the
changes we made with replace-string).

Type: M-< M-% Whirligig Enter HealthBug Enter

emacs localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S $OHQE XY

Let Whirligiglhelp you improwve your quality of life. Whatewver your
health goals, Whirligig can send reminders by email or cell phone text
message reminding you to take medication, exercise, drink 64 ounces of
water, or work on your stress level. You set the frequency of
reminders, @nd let Whirligig spur wou on to meet your goals.

4 Keep your New Vear's resolutions with Whirligig!
--:-- PRdescription A1l L1 e - |
X nuery replacing Whirligig with HealthBug: (? for help)

You're ready to replace the first occurrence; press Space to go on.

Searchand Replace | 57

Press: Space

emacs® localhost.localdomain
File Edit Options Buffers Toaols Help

DExHE S $ 0D RE XT

Let HealthBug help you improwe your quality of life. Whatewsr your
health goals, Whirligigfcan send reminders by email or cell phone text
message reminding you to take medication, exercise, drink 64 ounces of
water, or work on your stress level. You set the frequency of
reminders, and let Whirligig spur you on to meet wour goals.

Keep your New ¥ear's resolutions with Whirligig!

-—:** PRdescription 211 L2 S R T I T e P T |
J¥ ouery replacing Vhirligig with HealthBug: (7 for help)

When you press Space, Emacs replaces the first word; the query-replace operation
then moves to the second word.

This procedure continues until you reach the end of the file. As we’ve said, typing !
fixes the rest of the file.

In Table 3-3, you might have noticed that several keys, such as Space, have special-
ized meanings while the replacement is in progress. In practice, using these keys for a
different function is not confusing, though it might sound bad on paper. You might
want to try a query-replace on a practice file to get the hang of using the different
responses. If you are easily amused, you might enjoy opening the Emacs FAQ), sav-
ing it as another file, then replacing Emacs throughout.

Repeating Query-Replaces (and Other Complex Commands)

Now that you’ve learned the basics of query-replace, let’s talk about a shortcut that
applies not only in query-replace but anywhere in Emacs: repeating complex com-
mands, with slight modifications. We often exit a query-replace by mistake or decide
that the replacement we really wanted was just slightly different. Do we have to type
it all again? No. Simply go the beginning of the file and press C-x Esc Esc. The last
complex command you typed appears. If it’s not the one you want, type M-p to see
the previous command (do this as many times as necessary; M-n goes to the next
command). For example, let’s go to the beginning of the file and repeat the query-
replace we just carried out.

58 | Chapter3: Searchand Replace

Type: M-< followed by C-x Esc Esc

emacs® localhost.localdomain
File Edit Options Buffers Toaols Minibuf Help

DExEHE S ¥R REXT

I et HealthBug help you improwve your quality of life. Whatewer your
J health goals, HealthBug can send reminders by email or cell phone text

message reminding you to take medication, exercise, drink 64 ounces of
water, or work on your stress level. You set the frequency of
reminders, =nd let HealthBug spur wou on to meet your goals.

i
-—:** PRdescription Top L1 (Text F11l)--—---—-———————————————————————— 4
Redo: (query-replace "Whirligig" "HealthBug" nil {if (and transient-mark-@
@mode mark-active) (region-beginning)) (if {and transient-mack-mode mark-a@
f Sctive) (region-end)))

Emacs puts the last complex command in the minibuffer; in fact it looks more
complex than we remember it.

When we press M-<, we move to the beginning of the file; when we press C-x Esc
Esc, the last complex command is displayed. Emacs speaks to itself in dark words,
but we can still see that this is the command that we want.

This is the right command, so we don’t have to press M-p to see a previous com-
mand. If we wanted to, we could change the query-replace strings before pressing
Enter. In this case, the Marketing Department has once again changed the product’s
name from HealthBug (since bug could be construed as pest) to HealthBot (neutral,
but a bit less descriptive in our opinion). Our earlier query replace changed Whirli-
gig to HealthBug. We need to modify this command so it replaces Bug with Bot.

In the minibuffer, change Whirligig to Bug and HealthBug to Bot and press Enter.

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S « 0B RE XT

Let HealthBuglhelp you improwve your quality of life. Whatewer your
health goals, HealthBug can send reminders by email or cell phone text
message reminding you to take medication, emxercise, drink 64 ounces of
water. or work on your stress level. You set the frequency of
reminders, and let HealthBug spur you on to meet wour goals.

Keep your New ¥ear's resolutions with HealthBug!

--:** PRdescription 21l L1 (Text Fill)-———--————————— oo ————_ 3
¥ Query replacing Bug with Bot: (7 for help)

Pressing Enter executes the command again with the modified search and replace-
ment strings.

Searchand Replace | 59

As we mentioned, C-x Esc Esc works for any command involving input in the
minibuffer, not just query-replace. But we use this feature most frequently in query-
replace. It is also good for repeating keyboard macros (see Chapter 6).

Recursive Editing

When you do a query-replace, you inevitably see something else you want to change
in the file. Try it a few times—you’ll see what we mean! We typically try to remem-
ber the problem until we’re done, then get frustrated when we forget exactly what
and where the problem was.

Fortunately, Emacs provides an easier way. It allows you to start a recursive edit
while you’re in the middle of a query-replace. By starting a recursive edit, you effec-
tively put query-replace on hold while you make any other desired edits. When you
exit the recursive edit, the query-replace resumes where you left off.

To start a recursive edit while in query-replace, press C-r. (Note that like many other
key bindings, C-r has a different meaning in query-replace than it does in standard
Emacs.) When you start a recursive edit, square brackets ([]) appear on the mode
line. Let’s go back, one more time, to our public relations piece. You’ve used query-
replace to find the first Bug to change to Bot, and you are about to press Space to fix
it, when you remember that the lawyers said that the “64 ounces of water” state-
ment was too specific and could be construed as giving medical advice. A quick
recursive edit saves the day.

Type: C-r

emacs localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S $OHQE XY

Let Health@ug help you improwve your quality of life. Whatewver your
health goals, HealthBug can send reminders by email or cell phone text
message reminding you to take medication, exercise, drink 64 ounces of
water, or work on your stress lewel., Vou set the frequency of
reminders, and let HealthBug spur you on to mest your goals.

Keep your New Tear's resolutions with HealthBug!

--:** PRdescription Al] L1 [e — |

I

Notice the square brackets around (Text Fill), indicating a recursive edit in
progress.

Now do any editing you want to; you are in an editing mode just like standard
Emacs. Move down to the third line and delete “64 ounces of.” When you want to
resume the query-replace, press C-M-c. This command tells Emacs to leave the
recursive edit and reactivate the query-replace. Emacs moves back to the point where

60 | Chapter3: Searchand Replace

you were when you started the recursive edit. You can then continue making replace-
ments just as if nothing had happened.

Delete “64 ounces of,” then type C-M-c

emacs localhost.localdomain
File Edit Options Buffers Tools Help

DExEHE S $ 0B RRE XY

Let HealthBuglhelp you improwve your quality of life. Whatewer your
health goals, HealthBug can send reminders by email or cell phone text
message reminding you to take medication, exercise, drink

water, or work on your stress level. Vou set the frequency of
reminders, and let HealthBug spur you on to mest your goals.

Keep your New Tear's resolutions with HealthBug!

--:** PRdescription A1l L1 e - |
JX Ouery replacing Bug with Bot: {? for help)

Emacs goes back to query-replace and you press Space to fix the next Bug.

If you decide to exit the recursive edit and cancel the query-replace in one fell swoop,
you can type C-] (for abort-recursive-edit) or M-x top-level Enter rather than C-M-c.

In fact, you can start a recursive edit at any time, not just when you’re in a query-
replace. The command M-x recursive-edit Enter puts you into a recursive edit; C-M-c
takes you out of the recursive edit and brings you back to what you were doing
before. You can even have recursive edits within recursive edits, although the possibil-
ity for confusion increases with each new level.

Are Emacs Searches Case-Sensitive?

By default, Emacs searches are not case-sensitive. Look at the Options menu and
you’ll see that the option Case-Insensitive Search is the only option that is checked
by default.

What does this mean in practical terms? If you search for the word random, the
search finds random, Random, and RANDOM, as well as oddities like RanDoM
and rANdOM. When doing replacements, Emacs pays attention to the form of the
word being replaced and replaces it with the same case. If you replaced random
with tandem, Random would be replaced with Tandem, and RANDOM would be
replaced with TANDEM. If you mix capitalization, the replacement string appears
just as you type it. healthbug would be replaced with HealthBug if that was the case
in the replacement string. In other words, the default search and replacement oper-
ations usually do what you want: they find a search string regardless of its case and
adjust the replacement appropriately for its context. However, sometimes you need
finer control.

Searchand Replace | 61

The variable case-fold-search determines whether searches are case-sensitive. It
applies to all searches: incremental searches, word searches, searches within search-
and-replace operations, and so on. By default, case-fold-search is set to t, which
means “ignore case unless the user types in mixed or uppercase.” This sensible
default is usually just what you want. But if you need case-sensitive searches, the
Case-Insensitive Search option on the Options menu provides an easy way to experi-
ment with this variable.

Likewise, if you don’t want Emacs to adjust the case of your replacement strings, you
can set the variable case-replace. Again, its value is t (for “true”) by default, which
means “adjust the case of a replacement string to match the original text”—that is,
capitalize the replacement if the original word was capitalized and so on. Setting this
variable to nil means “never adjust the case of the replacement string; always put it
in exactly as I typed it.” To change the value of case-replace, type M-x set-variable
Enter case-replace Enter nil Enter (there’s no menu option for this variable).

Both the menu option and the set-variable command change the behavior of Emacs
only temporarily. If you start a new editing session, you’ll be back to the default
behavior. This is probably what you want, because searching separately for capital-
ized and lowercase words is inconvenient.

You can set the value for the Case-Insensitive Search option permanently by select-
ing Save Options from the Options menu or by adding this line to your .emacs file:

(setq-default case-fold-search nil) ; require exact matches

To set case-replace permanently, add the following line to your .emacs file. You'll
need to restart Emacs to have the change take effect.

(setg-default case-replace nil) ; never change case when replacing

You could change these variables through Emacs’s interactive customization facility,
Custom, instead (see Chapter 10).

Regular Expressions for Search and Replacement Operations

Sometimes none of the simpler searches described in this chapter are adequate.
Regular expressions allow you to build searches with strings that contain various
wildcards.

Table 3-4 shows some of the characters you can use in creating a regular expres-
sion.

Table 3-4. Characters for creating regular expressions

Character(s) Match
A Matches the beginning of a line.
$ Matches the end of a line.

Matches any single character (like ? in filenames).

62 | Chapter3: Searchand Replace

Table 3-4. Characters for creating regular expressions (continued)

Character(s) Match

X Matches any group of zero or more characters (. matches any character and *
matches zero or more of the previous character).

\< Matches the beginning of a word.

\> Matches the end of a word.

[] Matches any character specified within the brackets; for example, [a-z] matches
any alphabetic character.

\s,\S Matches any whitespace character: space, a newline, a tab, a carriage return, a
formfeed, or a backspace; \S matches any character except whitespace.

\d,\D Matches any single digit, 0-9; \D matches any character but a digit.

\w, \W Matches any “word” character (upper- and lowercase letters, digits, and the under-

score character); \W matches any character but these.

If you do a regular expression search for *word$, you would find instances of word
on a line by itself. The ~ says that the w must be the first character on the line, the $
says that the d must be the last character.

If you wanted to find all words starting with beg and ending with the letter s, you
could use beg[a-z]*s as your regular expression. This would find the words begins,
begets, and begonias, in addition to really odd words like shibegrees and altbegaslia. 1f
you don’t want these mutants—that is, if you really want words that begin with beg
and end with s, use \<beg[a-z]*s\>. The \< is a special sequence that matches the
beginning of a word; \> matches the end of a word. If you wanted to find the words
beg, big, and bag; but not begonias, and certainly not any strange words with beg on
the inside, you would use \<b[a-z]g\> as the regular expression.

To search for a A, $, ., *, [,], or any number of other special characters, you obvi-
ously can’t use the character itself. Put a backslash (\) first—i.e., to search for a
period, search for \. For example, to search for the electronic mail address*:

howie@mcds.com
the regular expression would be:
howie@mcds\.com

This is a barebones introduction to regular expressions; see Chapter 11 for more
details and Mastering Regular Expressions by Jeffrey Friedl (O’Reilly) for a book-
length treatment of this topic.

You can use regular expressions in incremental searches and in query-replace.
Table 3-5 lists the commands you use for regular expression searches. Although they
are initiated with slightly different commands, the searches are the same as those
described earlier in this chapter.

Searchand Replace | 63

Table 3-5. Regular expression search commands

Keystrokes Command name Action

C-M-s Enter re-search-forward Search for a regular expression for-
Edit — Search — Regexp Forward ward.

C-M-r Enter re-search-backward Search for a regular expression back-
Edit — Search — Regexp Backwards ward.

C-M-s isearch-forward- Search incrementally forward for a
Edit — Search — Incremental Search— regexp regular expression.

Forward Regexp

CM-r isearch-backward- Search incrementally backward for a
Edit — Search — Incremental Search— regexp regular expression.

Backward Regexp

C-M-% query-replace-regexp Query-replace a regular expression.

Edit — Replace — Replace Regexp

(none) replace-regexp Globally replace a regular expression
unconditionally (use with caution).

Checking Spelling Using Ispell

Emacs includes two spell-checking interfaces: to the Unix spell checker, spell, and
to Ispell, which many people, including us, prefer. We say “interfaces” because
Emacs does not include the executables for either of these spell-checkers. Because
Ispell is superior and runs on a variety of platforms, we’ll cover only Ispell here. If
you attempt to run Ispell and it is not available, you’ll have to install it. Chapter 13
provides details on installing Ispell on Windows and on Mac OS X.

A further enhancement to Ispell is Flyspell, a command that highlights misspelled
words on the fly. If you have Ispell installed, you’ll have Flyspell support as well.

Checking a Buffer

Ispell includes options to check a buffer, a region, the comments in a program, or a
single word. After you type the command telling Ispell what area you want to check,
it works the same way for all these options. We'll describe ispell-buffer here. If all
the words are spelled correctly, Ispell displays the message, Spell-checking done. If
Ispell finds a misspelled word, a screen like the following appears. Let’s spell-check a
hastily typed passage from Homer’s Odyssey.

64 | Chapter3: Searchand Replace

Type: Esc x ispell-buffer Enter

emacs localhost.localdomain

File Edit Options Buffers Tools Help

DExEHES $ OB QE XE

[0y Telemachus (1) Telemarn's (2) Telemarketers
{3} Toolmakers {4) Telemachus's (5) Telecoms
{ (6) Telemeters (7) Steelmoker's (8) Toolmaker's
-- *Choices* -- word: Telemakhos
[§ But clear-headed Telemakhosflreplied:

the mother who bore me and took care of me?
My father is either dead or far away,
but dearly I should pay for this
f at Tkarios' hands, if ewer I sent her hack.
--:** odyssey Top L1 (Text Fill)——————-—m—m—mmmmmeoe 4

J "antirnoos, can I banish against her will

u Sto replace word,

I,.\.I' G-h or 7 for more options; SPC to leawe unchanged, Character @

Ispell finds the first unrecognized word in the buffer.

Ispell moves to the first unrecognized word, in this case a proper name correctly spelled
(except for the proper accent marks). At the top of the screen, Ispell opens a small win-
dow that displays alternative spellings, numbered starting with 0. The minibuffer says
C-h or ? for more options, SPC to leave unchanged, character to replace word.
In this case, we have a properly spelled name, so press i to ask Ispell to insert it into your
private dictionary, which is kept in a file called .ispell_<language> in your home direc-
tory,” where language is the language you are using (English by default). If this file
doesn’t exist, Ispell creates it without complaint and later asks you if you want to save it.
To insert the word in the dictionary in lowercase, press u and Ispell lowercases the word
and then puts it into your dictionary. Of course, because this is a proper name, we insert
it as it appears in the passage.

* Your default dictionary might be called something else entirely, like .aspell.language.pws. If you run the com-
mand ispell-check-version, you’ll see that although Ispell is supposedly running, it’s really Aspell behind the

scenes.

Checking Spelling Using Ispell

65

Press i:

emacs localhost.localdomain
File Edit Options Buffers Tools Help

DExEHES $ Q8 XE

; [0y &ntin's 1) Antonic's (2) Antermas (3} Anting's
{4y Antons (5) &nterna's (B} Antoni's (7)) Antonino's

-- *Choices* -- word: Antinnoos
I But clear-headed Telemakhos replied:

J "antinnoosf can I banish against her will
the mother who bore me and took care of me?
My father is either dead or far away,
but dearly I should pay for this
{ at Ikarios' hands, if ever I sent her hack.
--:** odyssey Top L3 (Text Fill)---——--—--————--————= 4
I,.\.I' G-h or 7 for more options; SPC to leawe unchanged, Character @

u Sto replace word,

Ispell moves to the next unrecognized word, another proper name.

We insert a few more proper names and move along to the first real misspelling,
pwers.

emacsd localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S $ BB RE XE

; [0} Powers (1) powers (2) pewees (3] power's (4] peers
'

{5y piers (6) puers (7) ewers (8) pewee's (9) peres

-- *Choices* -- word: pwers
[§ My father is either dead or far away,
but dearly I should pay for this
at Ikarios' hands, if ewer I sent her back.
The pwersflef darkness wuld requite i, too,
my mother's parting crse wold call hel's fries
to punish me, along with the scorn of men.
/ Wo: I can nver giv the wrd for this.
-—:** odyssey Eot L8 (Text Fill)-—————--————————————— 4
I,.\.I' C-h or 7 for more options; SPC to leawve unchanged, Character @

u’ Sto replace word

Ispell finds pwers misspelled.

Ispell opens a window at the top of the screen listing choices for a replacement. Usu-
ally one of its top few choices is correct.

66 | Chapter3: Searchand Replace

To select powers, press: 1

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DExEHERE S $ 0l & K8
; [0} wild (1) would 2 Wald (3} weld ({4} wold
(B} Wwilda (&) Wilde (7) wield (8) wiled (9 wilds

-- *Choices* -- word: wuld
I My father is either dead or far away,
but dearly I should pay for this
at Ikarios' hands, if ewer I sent her hack.
The powers of darkness wuldfrequite it. toa,
ny mother's parting crse wold call hel's fries
to punish me, along with the scorn of men.
£ No: I can nwer giv the wrd for this.
--:** odyssey Bot L8 (Text Fill)---——-——--————=-————= 4
I,.\.I' G-h or 7 for more options; SPC to leawe unchanged, Character @

u Sto replace word,

Ispell replaces the word and goes on to the next misspelling.

If one of the words that Ispell lists at the top of the screen is correct, you type the
number, and Ispell makes the replacement. To replace a word yourself, press r.
After you type the corrected word, Ispell replaces it. If you press R instead, Ispell

starts a query-replace through which you can correct all cases of the misspelling in
this buffer.

Instead of replacing the word, you may simply want Ispell to skip over it. To skip
this occurrence of a misspelled word, press Space. To ignore a misspelled word for
the rest of the session for all buffers, press a (for accept). Uppercase A has one subtle
difference: it tells Ispell to accept the word for this session but only in this buffer.

If you can see that something more complicated is wrong, you can start a recursive
edit by typing C-r. Fix the error and type C-M-c to exit the recursive edit and resume
Ispell. (You may recall that we discussed recursive editing earlier in this chapter.)

Our passage repeatedly spells would incorrectly and typing the character beside the
correct word only replaces a single incidence, so a better choice would be to type R
to query-replace the word throughout the buffer.

Checking Spelling Using Ispell | 67

Type: R

emacs® localhost.localdomain
File Edit Options Buffers Tools Minibuf Help

DExEHEBE S ¥ BB RE XY

; [0} wild (1) would 2 Wald (3} weld ({4} wold
7 (B} Wwilda (&) Wilde (7) wield (8) wiled (9 wilds

-- *Choices* -- word: wold
I My father is either dead or far away,
but dearly I should pay for this
J at Ikarios' hands, if ewer I sent her back.

The powers of darkness wuldJrequite it. toa,
ny mother's parting crse wold call hel's fries
to punish me, along with the scorn of men.

£ No: I can nwer giv the wrd for this.

--:** odyssey Bot L8 (Text Fill)---——-——--————=-————= 4

I;}f (uery-replacement for wuld: wul

Ispell asks for the correction for wuld.

Change wuld to would and press Enter.

emacsd localhost.localdomain
File Edit Options Buffers Tools Help

DExEHES $ B8 XE

I But clear-headed Telemakhos replied:

"Bntinnoos, can I banish against her will
the mother who bore me and took care of me?
My father is either dead or far away,
but dearly I should pay for this
at Ikarios' hands, if ewer I sent her back.
The powers of darkness would requite 1t, too,
ny mother's parting crse wuldfcall hel's fries
to punish me, along with the scorn of men.
f Wo: I can nver giv the wrd for this.
-—:** odyssey all L9 (Text Fill)-——————-—-————————————— 4
ﬁ Query creplacing wuld with would: (7 for help)

Ispell starts a query-replace.

We want to replace all occurrences of the misspelled word, so we’ll type !, which, as
you might recall, means “replace them all without asking.”

68 | Chapter3: Searchand Replace

Type ! then y when prompted about saving your personal dictionary.

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DE xHE > $0bRE XT
[0y cruse (1) curse (2) Case (3] Cree (4} case
{B) Crees (B) cares (7) cores ({8) cries (9) cures

-- *Choices* -- word: crse
I My father is either dead or far away,
but dearly I should pay for this
at Ikarios' hands, if ewer I sent her hack.
The powers of darkness would requite it, too,
my mother's parting crsefjwould call hel's fries
to punish me, along with the scorn of men.
£ No: I can nwer giv the wrd for this.
--:** odyssey Bot L9 (Text Fill)---——-——--————---———= 4
I,.\.I' G-h or 7 for more options; SPC to leawe unchanged, Character @

u Sto replace word,

Emacs moves to the “next” misspelling, crse.

Ispell replaces the words, then goes on to the next misspelling, crse. Note that this
misspelling occurs before the second incorrect wuld. Because we already query-
replaced wuld with would, Ispell had to move backward to find the next misspelling.

Remember that Ispell, like all spellcheckers, corrects only true misspellings. If a mis-
spelling forms another word, Ispell will leave it alone. It’s up to you to change fries to
fires in this passage.

Different forms of the same word must be corrected separately. For example, if you
misspell receive, receives, and receiving by reversing the i and the e, you must change
each misspelled word.

Checking a Single Word

Sometimes when you are typing, you’ll say, “That doesn’t look right.” To check the
word the cursor is on, type M-$ (for ispell-word). Ispell checks the spelling of the
word and displays word: ok if the word is spelled correctly. If the word is incorrect,
Ispell displays a window with the options discussed earlier.

Completing a Word

You might start typing a word and then wonder, “How is that spelled?” This is
where ispell-complete-word comes in. You’re typing a word and you get stuck. Type
M-Tab (for ispell-complete-word) and you get a list of choices. After typing occur,
you use this command to find out the answer.

Checking Spelling Using Ispell | 69

Type: occur M-Tab

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DExEHEBE S $ b RE XE

[T [0} occur 1) occurred (2) occurrence (3) oceurrences
-- *Choices* -- word: occur

I regret the unfortunate ocout]]
]

7
-—:** letter T2z L2l (Text Fill)——-———-———m—mmmmmmo e 4
I,.\.I' G-h or 7 for more options; SPC to leawe unchanged, Character @

u Sto replace word,

Ispell choices appear at the top of the screen.

To select occurrence, type: 2

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

DE xHE S $ 0 N&E X

I regret the unfortunate occurrencef]

-—:** letter Tlz L2l (Text Fill)——--——-—m—mmmmmmmooe 4

Iy

Ispell completes the word for you.

This feature varies in its helpfulness. In this case the replacement needed was shown.
It won’t always work that way, but you can always simply spell it wrong and then
use ispell-buffer to fix it.

Spelichecking on the Fly with Flyspell

Flyspell highlights misspelled words as you type. You can also use it to check exist-
ing text. The commands for doing this are different.

To check text as you type, enter Flyspell mode by typing M-x flyspell-mode Enter. Fly
appears on the mode line. If you set up Emacs to enter Flyspell mode automatically,
your text is always spell-checked “on the fly.” An alternative to Flyspell mode is Fly-
spell prog mode. In this mode, designed for programmers, Emacs highlights misspell-
ings only in comments or strings. To enter it, type M-x flyspell-prog-mode Enter.

70 | Chapter3: Searchand Replace

To check existing text, you run M-x flyspell-buffer Enter. This command is like
ispell-buffer; it spell-checks the entire buffer. Flyspell’s interface is different; it
underlines all the words it suspects are misspelled and gives you a pop-up menu
of alternatives.

The best way to check out Flyspell mode is to turn it on and type some misspelled
text to see it in action. No matter whether you enter Flyspell mode or run flyspell-
buffer, you correct errors in the same way. We’ll demonstrate flyspell-buffer on our
misspelled odyssey file. Because it’s an existing file (not a new file we’re typing), we
need to issue the flyspell-buffer command.

Type: Esc x flyspell-buffer Enter

® O Emacs@Debra-Camerons-Computer.local

| 2y
DExEdB s Y BER S X
But clear-heoded Telemokhos replied:
"Antinnoos, can I banish ogoinst her will
the mother who bore me ond took care of me?
My fother is either deod or for oway,
but dearly I should pay for this*
at Ikorios' hands, if ever I senf® her back.
The peers of dorkness wuld requite it, too,
my mother's parting crse wld call hel’s fries
to punish me, along with the scorn of men. =
No: T con nver giv the wrd for this. 4+
v
--:**_-Fmocs odyssey Tep L¥ (Text FL11)----------
Spell Checking completed. v

Flyspell highlights misspelled words (Mac OS X).

Flyspell highlights misspelled words in red. Words that are repeatedly misspelled are
highlighted in yellow. Note that it doesn’t highlight the proper names we inserted in
the dictionary earlier using Ispell; Flyspell checks to see whether words are in your
personal dictionary before highlighting them as errors.

You move to a misspelled word and press the middle mouse button to display a pop-
up menu of possible replacements. (This implies that you have a three-button
mouse, and, to be honest, you need one to make Flyspell work properly.) You select
a replacement using the mouse.

Checking Spelling Using Ispell | 71

Move the cursor to crse and press the middle mouse button.

ter.local

But clear-heoded Telemokhos replied:

"Antinnoos, con I bhonish ogoinst her will

the mother who bore me ond took core of me?

My fother is either deod or faor oway,

but deorly I should poy for this

at Ikarios' honds, if ever I sent her bock.
The peers of dorkness wuld requite 1t, too,

my mother's parting £ ries
to punish me, olong
MNo: I con nver giv t

crse [nil]

case
Cree

Save word
Accept (session)
Accept (buffer)

Flyspell displays a pop-up window of alternatives; you choose one with the mouse
(Mac OS X).

Choose curse with the mouse.

But clear-heoded Telemakhos replied:

"Antinnoos, con I bonish ogoinst her will :
the mother who bore me and took core of me? |
My fother is either deuzgur' far oway, |
but dearly I should pay for this |
ot Ikarios"' honds, if ever I sent her bock.

The peers of dorkness wuld reguite it, +too, |
my mother's parting curBe wld call hel’s fries |
to punish me, olong with the scorn of men.

Mo: I can nver giv the wrd for this. -

Emacs inserts the correct replacement (Mac OS X).

72 | Chapter3: Searchand Replace

Ispell inserts new words in the dictionary. Flyspell takes it a step further, creating
word abbreviations for words that you misspell. In essence, a word abbreviation tells
Emacs, in this case, that wrd is just an abbreviation for word, and that therefore
Emacs should replace it automatically. If you turn on word abbreviation mode,
described in the next section, chronic misspellings that Flyspell encounters will be
automatically corrected.

How can you tell Flyspell is using word abbreviations? When you exit a session in
which you’ve used Flyspell, you see a prompt that says, Save abbrevs in ~/.abbrev_
defs (y or n). This automatic correction won’t occur without turning on word abbre-
viation mode, whether in your startup or manually. Read the section on this topic in
this chapter for more details.

What do you do if you encounter a word that’s spelled correctly but that Flyspell
doesn’t recognize? You could insert it in your Ispell dictionary if it’s a word you use
frequently. The Save word option on the Flyspell pop-up menu handles this. For a
temporary fix, the options Accept buffer and Accept session tell Flyspell to accept a
word for the current buffer or for all buffers in the current Emacs session automati-
cally. Of course, if it’s a word you use frequently, you may want to insert it in the
Ispell dictionary to keep Flyspell from flagging it each time.

To enter flyspell mode automatically, add this line to your .emacs file:
(setg-default flyspell-mode t)

Table 3-6 summarizes the Ispell and Flyspell commands.

Table 3-6. Spell-checking commands

Keystrokes Command name Action

M-$ ispell-word
Tools — Spell Checking —
Spell-Check Word

(none) ispell-region
Tools — Spell Checking —
Spell-Check Region

Check the word the cursor is on or the word following
the cursor.

Check spelling of the region.

(none) ispell-buffer
Tools — Spell Checking —
Spell-Check Buffer

(none) ispell-message
Tools — Spell Checking —
Spell-Check Message

Check spelling of the buffer.

Check spelling of the body of a mail message.

(none)

Tools — Spell Checking —
Spell-Check Comments
CuM-$

Tools — Spell Checking —
Continue Spell-Checking

ispell-comments-and-
strings

ispell-continue

Check spelling of comments and strings in a program.

Resume Ispell; it works only if stopped Ispell with C-g.

Checking Spelling Using Ispell |

73

Table 3-6. Spell-checking commands (continued)

Keystrokes Command name Action

(none) ispell-kill-ispell Kill the Ispell process, which continues to run in the
background after it is invoked.

M-Tab ispell-complete-word In text mode, list possible completions for the current

Tools — Spell Checking — word.

Complete Word

(none) flyspell-mode Enter the Flyspell minor mode, in which incorrectly

Tools — Spell Checking — spelled words are highlighted.

Automatic Spell-Checking (Flyspell)

(none) flyspell-buffer Spell-check the current buffer, underlining all mis-
spelled words. Use middle mouse button to correct.

Word Abbreviations

Word abbreviation mode and dynamic abbreviations are two features that lazy typ-
ists will love. The authors proudly include themselves in that category, so you’ll be in
good company if you choose to explore these features. Dynamic abbreviations are
less complex, so we’ll discuss them first.

Dynamic Abbreviations

Let’s say that you are a scientist writing a paper on invertebrates. You're likely to
have many long technical words in your paper, and if you’re like us, you get tired of
typing long words.

Dynamic abbreviations come to the rescue. After you’ve typed a long word once, you
can simply type a few letters and give the command M-/ (for dabbrev-expand).
Emacs inserts the nearest word that starts with that string.

Type: In M-/

emacs localhost.localdomain
File Edit Options Buffers Toaols Help

DExHdBE S BB E XD
Though some refer to them as spineless, inwvertebrates are harcdy,
interesting, a=nd sometimes delicious life forms. Interesting]

--:** invertebrates a1l LZ (Text Fill)-——--———mommmmmmmmmmomo oo)

I |

Emacs inserts the last word starting with in, in this case, interesting.

Interesting was not the word we were hoping for; it’s invertebrates we wanted. With-
out moving the cursor, type M-/ again.

74 | Chapter3: Searchand Replace

emacs localhost.localdomain
File Edit Options Buffers Tools Help

NDExEHEBE S 0D RE XD

Thowgh some refer to them as spineless, invertebrates are hardi,

interesting, and sometimes delicious life forms. Inwertebrates

-—.*+ invertebrates A1l LZ e R T e PO 5|

X =

Emacs inserts the word Invertebrates, which is what we wanted.

The word being expanded need not be earlier in the file to be considered nearest.
Emacs looks behind and ahead of the cursor position to find words it can expand. If
there are eligible words that are equidistant above and below the cursor position
both, Emacs selects the word that is above as the expansion.

Earlier we talked about completing a word with Ispell. Dynamic abbreviations are a
bit different. When you complete a word, the word probably isn’t in the buffer (yet).
When you use a dynamic abbreviation, you simply don’t want to type a word you
typed earlier and you’re asking Emacs to do it for you.

Using dynamic abbreviations doesn’t require entering a special minor mode, as stan-
dard word abbreviations do. They are simply an aid for the tired typist. Word abbre-
viation mode has some other advantages, though, such as the ability to create an
abbreviation for a phrase or a habitual typo, as we will see next.

Word Abbreviation Mode

Word abbreviation mode lets you define abbreviations for special words and
phrases. You can use it in many ways. Traditionally, abbreviation mode is used so
that you don’t have to type long words or phrases in their entirety. For example, let’s
say you are writing a contract that repeatedly references the National Institute of
Standards and Technology, and you are not allowed to use an acronym. Rather than
typing the full name, you can define the abbreviation nist. Once you have set up this
definition, Emacs inserts the full name whenever you type the abbreviation nist, fol-
lowed by a space, tab, or punctuation mark. Emacs watches for you to type an abbre-
viation, then expands it automatically for you.

Before showing you how to get into word abbreviation mode and define your abbre-
viation list, we’ll start with an example. Our favorite nontraditional use for word
abbreviation mode is to correct misspellings as you type.” Almost everyone has a
dozen or so words that they habitually type incorrectly because of worn neural path-
ways. You can simply tell Emacs that these misspellings are “abbreviations” for the
correct versions, and Emacs fixes the misspellings every time you type them; you

Word Abbreviations | 75

may not even notice that you typed the word wrong before Emacs fixes it. So assume
that you’ve entered word abbreviation mode, and that you’ve defined receive as an
abbreviation for recieve; now, as you’re typing, you make an innocent mistake.

Type: You will recieve

u]

T c:/materialsrequest == ﬁ

File Edit Options Euffers Tools Help
OC@* Qd > @G FE ?
Tou will reciewve ﬂ

=l
-1%*% materialsregquest A1l (1,16) [Text Abhrew Fill)--

=

You type the offending word but haven’t yet pressed Space, which will cue Emacs to
correct it (Windows).

Type: Space the materials you requested shortly

T c:/materialsrequest || ﬁ

File Edit Options Buffers Tools Help
D@ x Q& > @I PF ?
You will receiwve the materials you regquested Shortly.l il

[

—-1%** materialsrequest AL11 (1,53) [Text Albbrew Fill)—-

Emacs corrects the word automatically after you press Space; you need not stop typ-
ing or even be aware that a mistake has been made and corrected (Windows).

Besides the convenience of being able to invent abbreviations for phrases that you
frequently type, you can see that setting up a short list of abbreviations for common
misspellings could reduce the time it takes to proofread files and reduce the number
of common typing errors.

* Once upon a time this use of word abbreviation mode was nontraditional; these days Flyspell, described ear-
lier, automatically defines misspellings as abbreviations.

76 | Chapter3: Searchand Replace

When you define abbreviations, never use abbreviations that are words in their own
right or Emacs may expand the word when you don’t want it to, because expansion
takes place without asking. For example, if you frequently write about the World
Association for Replicant Technology, don’t define an abbreviation of wart, or you
won’t be able to write about the difficulties of handling toads. (If you use the word
wart so infrequently that you think the convenience of the acronym warrants it, you
can use C-_ to undo the abbreviation when you really want to type wart.)

Emacs knows the abbreviations exactly as you define them. If you define recieve as
an abbreviation for receive, you must also define recieves, recieving, and recieved as
abbreviations to cover all the forms of the word you might misspell.

Before you go ahead and define some abbreviations, here’s one more basic fact you
should know. Emacs classifies abbreviations according to which modes they work in.
Global abbreviations work in all modes; local abbreviations work only in the mode
in which they were defined. For example, if you want abbreviations to work only in
text mode and not in C mode, define them as local while you are in text mode. If you
want abbreviations to work in any mode, define them as global. Remember: abbrevi-
ations are local to modes, not to files or buffers.

Emacs also provides an inverse method for defining abbreviations. This method is
called inverse because you type the abbreviation and then the definition. Some com-
mands (which we won’t discuss) let you type the definition and then the abbrevia-
tion, but they require some tricky key sequences to let Emacs know how many words
preceding the cursor are part of the abbreviation. The inverse method is easier and it
works whether the definition for the abbreviation is one word or ten words.

Trying word abbreviations for one session

Usually, if you go to the trouble of defining a word abbreviation, you will use it in
more than one Emacs session. But if you’d like to try out abbreviation mode to see if
you want to incorporate it into your startup, use the following procedure.

To define word abbreviations for this buffer and session:

1. Enter word abbreviation mode by typing M-x abbrev-mode Enter. Abbrev
appears on the mode line. For a global abbreviation, type the abbreviation you
want to use and type C-x ai g or C-x a - (for add-inverse-global). (For a local
abbreviation, type C-x ail for add-inverse-local instead.) Emacs then asks you
for the expansion.

2. Type the definition for the abbreviation and press Enter. Emacs then expands
the abbreviation and will do so each time you type it followed by a space or
punctuation mark.

3. When you exit Emacs. it asks if you want to save the abbreviations in .abbrev_
defs. Typey if you want to save them.

Word Abbreviations | 77

4. The abbreviations you’ve defined will work only in buffers where you enter
abbrev mode.

If you find that you like using word abbreviation mode, you may want to make it
part of your startup, as described in the following section.

Making word abbreviations part of your startup

Once you become hooked on using abbreviation mode, it’s easiest to incorporate it
into your .emacs file. This procedure creates a permanent file of your word abbrevia-
tions that is loaded every time you start Emacs. You can also delete abbreviations
from this file; we’ll discuss how to do so in the next section.

To define word abbreviations and make them part of your startup:

1. Add these lines to your .emacs file:

(setg-default abbrev-mode t)
(read-abbrev-file "~/.abbrev_defs")
(setq save-abbrevs t)

2. Save the .emacs file and reenter Emacs. Abbrev appears on the mode line. You
may get an error message saying Emacs can’t load your abbrev file (understand-
able if you haven’t created the file yet). Ignore this error message; it won’t hap-
pen again.

3. Type an abbreviation and type C-x ai g or C-x a - following the abbreviation.
These commands create a global abbreviation; if you want to create a local
abbreviation instead, type C-x ail. Emacs asks you for the expansion.

4. Type the definition for the abbreviation and press Enter. Emacs expands the
abbreviation and will do so each time you type it followed by a space or punctu-
ation mark. You can define as many abbreviations as you want to by repeating
Steps 3 and 4.

5. Type C-x C-c to exit Emacs. Emacs asks if you want to save the abbreviations in
.abbrev_defs.

6. Type y to save your abbreviations.

After you define some abbreviations and save them, Emacs loads the abbreviations file
automatically. When you define word abbreviations in subsequent sessions, Emacs
asks again whether you want to save the abbreviations file. Respond with a y to save
the new abbreviations you’ve defined and have them take effect automatically.

Deleting a word abbreviation

If you use word abbreviations frequently, you may define an abbreviation and later
change your mind. You can edit the word abbreviation list by typing M-x edit-abbrevs
Enter. You can see (but not edit) the list by typing M-x list-abbrevs Enter.

78 | (Chapter3: Searchand Replace

After the list is displayed, use C-k (or any other editing commands) to delete the
abbreviations you don’t want to use. Because Emacs itself formats this list, don’t try
to edit lines or add new lines; deleting is about the only operation that’s safe. Here’s
how the abbreviations look when you edit word abbreviations. The file is divided
into different sections based on whether the abbreviations are global or local to a
particular mode:

(text-mode-abbrev-table)
(lisp-mode-abbrev-table)
(fundamental-mode-abbrev-table)
(global-abbrev-table)

"iwthout"1 "without"

"prhase” 1 "phrase"
"teh" 1 "the"

"fo" 1 "of"

"eamcs" 2 "Emacs"
"wrok" 1 "work"

"aslo" 1 "also"
"sotred" 1 "stored"
"inforamtion"1"information"
"esc" 6 "Esc"

"taht" 1 "that"

"chatper"1 "chapter"

"adn" 1 "and"

"iwth" 1 "with"

"chpater"1 "chapter"

"loaction"1"location"

"recieve"1l "receive"

"wart" 1 "World Association for Replicant Technology"

The file is divided into sections by mode. We defined global abbreviations in this
case; any abbreviations Flyspell (described earlier in this chapter) creates are local
abbreviations and would be listed under the mode in which they were defined.

In this buffer, the first column lists the abbreviations (in this case, mostly misspell-
ings). The second column is for internal record keeping; you don’t need to concern
yourself with it. The third column provides the definitions of the abbreviations, the
word or phrase that Emacs substitutes whenever it sees the abbreviation.

To delete any abbreviation, delete the line for that abbreviation and save the file by
typing M-x write-abbrev-file. You can move back to the buffer you were editing
before by typing C-x b (a command for working with multiple buffers, discussed in
Chapter 4).

Word Abbreviations | 79

Disabling word abbreviations

You can get rid of word abbreviations completely in one of two ways. First, you can
type M-x kill-all-abbrevs Enter. This command disables word abbreviations for the
current session.

Second, you can delete the file the abbreviations are in. If you made word abbrevia-
tions part of your startup, delete the read-abbrev-file line from your .emacs file.

Abbreviations and capitalization

Usually, Emacs capitalizes abbreviations exactly the way you want. If you run into
special situations with abbreviations and capitalization, however, you may wantl to
know what’s going on behind the scenes. Here are the rules:

* If the abbreviation’s definition contains any uppercase letters, Emacs always
inserts the definition without changing anything. For example, if you define ora
as an abbreviation for O’Reilly Media, O’Reilly will always be capitalized exactly
as shown.

* If the abbreviation’s definition is all lowercase, Emacs capitalizes according to
the following rules:

* If you type all of the letters of the abbreviation in lowercase, Emacs inserts
the definition in lowercase.

* If you type any of the letters of the abbreviation in uppercase, Emacs capital-
izes the first letter of the first word.

* If you type all of the letters of the abbreviation in uppercase, Emacs capital-
izes the first letter of every word, unless the variable abbrev-all-caps is set to
t; in this case, it capitalizes all letters.

Table 3-7 shows some examples.

Table 3-7. Word abbreviation capitalization

Abbreviation Definition You type: Expands to: Because:

Ic lamb chop Ic lamb chop Icis lowercase, so flamb chop is lowercase.

Ic lamb chop Lc Lamb chop There's one capital in Lc, so Lamb is capitalized.
Ic lamb chop IC Lamb chop There’s one capital in /C, so Lamb is capitalized.
Ic lamb chop LC Lamb Chop LCis all capitals, so both words are capitalized.
Ic Lamb Chop Ic Lamb Chop Capitals in the definition are always unchanged.
Ic Lamb Chop LC Lamb Chop Capitals in the definition are always unchanged.

You don’t need to remember the rules, but looking them over may help you out if
you can’t understand how Emacs is capitalizing. In our experience, defining abbrevi-
ations in lowercase circumvents most capitalization problems.

80 | Chapter3: Searchand Replace

Table 3-8 summarizes word abbreviation commands.

Table 3-8. Word abbreviation commands

Keystrokes Command name

M-/ dabbrev-expand

(none) abbrev-mode

Cxa-or inverse-add-global-abbrev
Cxaig

Cxail inverse-add-mode-abbrev
(none) unexpand-abbrev

(none) write-abbrev-file

(none) edit-abbrevs

(none) list-abbrevs

(none) kill-all-abbrevs

Action

Complete this word based on the nearest word that starts with
this string (press M-/ again if that's not the word you want).

Enter (or exit) word abbreviation mode.

After typing the global abbreviation, type the definition.

After typing the local abbreviation, type the definition.
Undo the last word abbreviation.

Write the word abbreviation file.

Edit the word abbreviations.

View the word abbreviations.

Kill abbreviations for this session.

Problems You May Encounter

* You search for a string you can see on the screen, and Emacs can’t find it. The
most probable explanation is that Emacs is taking into account line breaks and
punctuation, and you’re not including these in the search string. Use word

search, which ignores any line breaks or punctuation, to find the string.

* You get a message that says, Searching for program: No such file

Chapter 13 for details on installing Ispell on Mac OS X and Windows.

* You can’t see the pop-up menu in Flyspell. You activate this pop-up menu by
pointing the mouse at a given word and pressing the middle mouse button.

Essentially, you need a three-button mouse to run Flyspell.

or
directory ispell. You don’t have Ispell installed. Ispell is external to Emacs; see

Word Abbreviations |

81

CHAPTER 4
Using Buffers, Windows, and Frames

One of the most universally useful features of Emacs is the ability to edit multiple
buffers at once and to display more than one buffer using windows and frames. The
commands for doing this are simple; you learn only a few commands and yet experi-
ence a tremendous boost in productivity. The more you use multiple buffers, frames,
and windows, the more uses you’ll think of for them.

In this chapter, we discuss how to use buffers, windows, and frames. First we cover
the most commonly used commands, then, in the case of buffers and windows, move
on to some more esoteric commands. At the end of the chapter, we discuss book-
marks, a method for marking your place in a file.

Understanding Buffers, Windows,
and Frames

Conceptually, Emacs is different from most applications in two important ways.
First, its window terminology is different. Second, Emacs buffers are not tied to win-
dows or frames, unlike most applications.

Windows Versus Frames

Let’s get our terms straight first. GUI windows are not Emacs windows. Emacs calls
GUI windows frames. In part, this terminology is necessary because Emacs predates
GUIs and is still often used on terminals without GUI windows. Emacs windows are
split screens. We've seen them already; for example, when you ask for keyboard
help, you see it displayed in a *Help* buffer at the bottom of your screen. Figures 4-1
and 4-2 show Emacs frames and Emacs windows. In Figure 4-1, we see our dickens
and odyssey buffers in two separate frames. Figure 4-2 shows a single frame display-
ing two Emacs windows, one on top of the other, showing these two files.

82

% dickens - X

File Edit Options Buffers Tools Help
= LY =] e
DExHE s $EDHREXE
[
THE PERIOD
It was d
wisdom, | ¥ Bk
was the|| File Edit Options Buffers Tools Help
SEASON
despair ZA 5 =] P
e UBE x HE S § EIDHRQEXRE
way--in
soie of I But clear-headed Telemakhos replied:
- ood or
g "Antinnoos, can I banish against her will
—— -~ dickd the mother who bore me and took care of me?
| My father is either dead or far away.
-— but dearly I should pay for this
at Ikarios' hands, if ever I sent her back.
The pwers of darkness wold requite it, too,
my mother's parting crse wuld call hel's fries
to punish me, along with the scorn of men.
5 Mo: I can nwer giv the wrd for this.
--:-- odyssey all L1 (Text Fill)-——-——————————ommmm———— 4
4

Figure 4-1. Editing dickens and odyssey in Emacs frames

lhd emacs@localhost.localdomain
File Edit Options Buffers Tools Help

DExEHBA S s 5D RE XE
[§ I

s THE PERIOD[]

It was the best of times, it was the worst of times. it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it

--—:-- dickens Top L3 (Text F11l)--——-—————————— o
[§ But clear-headed Telsmakhos replied:

"Entinnoos, can I banish against her will
the mother who bore me and toock care of me?
My father iz either dead or far away. |l
but dearly I shouwld pay for this
f at Ikarios' hands, if ever I sent her hack.
--:-- odyssey Top L5 (Text Fill)--—=————=————mmmmmmmmmmmmm oo 4

4

Figure 4-2. Editing dickens and odyssey in Emacs windows

From now on, when we say frame, we mean a separate GUI window. When we say
window, we mean a portion of the current Emacs display. And from a practical
standpoint, we emphasize that this is not an either-or proposition. Even if you prefer
multiple frames, you will still use Emacs-style windows sometimes. Emacs itself will
see to that.

Understanding Buffers, Windows, and Frames | 83

Buffers: Independent of Windows and Frames

Now what about buffers? Essentially, both windows and frames are ways to display a
buffer, which, as defined in Chapter 1, may contain a copy of a file or not. Buffers
may contain files. They may be Emacs-generated buffers, like *Messages*, *scratch*,
or *Help*. Or they may be buffers that you create but haven’t written to a file.

Most GUI applications tie certain files to certain GUI windows or, in Emacspeak,
frames. Emacs’s detachment of buffers from their display (whether a split display or
a separate frame) is more powerful and flexible. To be honest, most of the time we
prefer using a single Emacs frame and switching between buffers using C-x b. It’s
much easier than mousing between frames or dealing with a split screen, though
each has its advantages in some situations.

More About Buffers

How do you know how many buffers are active in Emacs and what they are? There
are three ways: the buffer list (which appears in a window when you type C-x C-b),
the Buffers menu (which lists active buffers and commands for navigating them), and
the Buffer pop-up menu (accessed by holding down Ctrl and clicking the left mouse
button, which lists buffers by mode).

Emacs creates its own specialized buffers. The names for these internal buffers gener-
ally have the format *buffer name*. *Help*, *scratch*, and *Buffer List* are just a
few of the buffers that Emacs creates.

When you start Emacs, it generates two buffers:

Messages
scratch

Messages is a buffer where Emacs accumulates messages from its startup and from
the minibuffer. *scratch* is just what it sounds like: a temporary scratchpad where
you can type. It won’t be saved unless you explicitly write it to a file using C-x C-w.

Of course, typically you edit files with Emacs. These files are then copied into buff-
ers of the same name. If you ask for help, you’ll also have a *Help* buffer.

The number of buffers you can have really has no limit. Most of the time, only one or
two buffers are displayed, but even if you can’t see them, all the buffers you create in
an Emacs session are still active. You can think of them as a stack of pages, with the
one being displayed as the top page. At any time, you can turn to another page
(another buffer), or you can create a new page.

Each buffer has an associated major mode that determines much about how Emacs
behaves in that buffer. For example, text mode, designed for writing text, behaves
differently from Lisp mode, which is designed for writing Lisp programs.

84 | Chapter4: Using Buffers, Windows, and Frames

You can display multiple buffers in separate windows or frames or both. The impor-
tant thing to remember is that all the buffers you create are active even if they are not
currently displayed.

Working with Multiple Buffers

If you want to create a buffer that contains a file, simply type C-x C-f to find the file.
Emacs automatically creates a second buffer and moves you there. If you already
have a copy of the file in a buffer, C-x C-f just moves you to the existing buffer. This
move is sensible and probably really what you want anyhow; if C-x C-f read the file
from disk every time, you could end up with many versions of the same file that were
each slightly different. If the filename you give C-x C-f doesn’t exist, Emacs assumes
you want to create a new file by that name and moves you to a blank buffer.

Switching Buffers

C-x C-f is always followed by a filename. The command for moving between buff-
ers, C-x b, is followed by a buffer name. Did you realize that the mode line doesn’t
display filenames but only buffer names? Some versions of Emacs show both, but
GNU Emacs shows only the buffer name. The buffer name and the filename, if any,
are the same unless you change them (see the section “Renaming Buffers,” later in
this chapter).

To move between the buffers, type C-x b. Emacs shows you a default buffer name.
Press Enter if that’s the buffer you want, or type the first few characters of the cor-
rect buffer name and press Tab. Emacs fills in the rest of the name. Now press Enter
to move to the buffer.

You can do the following with C-x b:

If you type C-x b followed by: Emacs:

A new buffer name (reates a new buffer that isn’t connected with a file
and moves there.

The name of an existing buffer Moves you to the buffer (it doesn’t matter whether

the buffer is connected with a file or not).

If you want to create a second (or third or fourth, etc.) empty buffer, type C-x b.
Emacs asks for a buffer name. You can use any name, for example, practice, and
press Enter. Emacs creates the buffer and moves you there. For example, assume
you’ve been working on your tried-and-true dickens buffer. But you’d like some-
thing new, so you start a new buffer to play with some prose from James Joyce.

Working with Multiple Buffers | 85

Type: C-x b joyce

emacs®@ localhost.localdomain
File Edit Options Buffers Tools bdinibuf Help

DExHE S XEERE XE
Jy I

THE FERIOD[]

It was the best of times, it was the worst of times, 1t was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had ewverything before ws, we had nothing before us, we
were all going direct to Heaven, we were all going direct the other

f way-—-in short, the period was so far like the present period, that

--:-- dickens Top L3 (Text Fill)-———----————————————————— - ——— 4

¥ sSwitch to buffer: (default *scratch*] joycel]

You typed a new buffer name.

Type: Enter

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

DExEHE s EhE XD

|
|
-u:-- joyce all 11 = B 0 K e i s b e s S |

It

Now you have a new buffer named joyce to type in.

This procedure isn’t all that different from using C-x C-f; about the only difference is
that the new buffer, joyce, isn’t yet associated with a file. Therefore, if you quit
Emacs, the editor won’t ask you whether or not you want to save it.

C-x b is especially useful if you don’t know the name of the file you are working
with. Assume you’re working with some obscure file with an unusual name such
as .saves-5175-pcp832913pcs.nrockv01.ky.roadrunner.com. Now assume that you
accidentally do something that makes this buffer disappear from your screen.
How do you get .saves-5175-pcp832913pcs.nrockv01.ky.roadrunner.com back
onto the screen? Do you need to remember the entire name or even a part of it?
No. Before doing anything else, just type C-x b. The default buffer is the buffer
that most recently disappeared; type Enter and you’ll see it again.

Alternatively, the Buffer Menu popup lists buffers by major mode, and you can
choose one. Hold down Ctrl and click the left mouse button to see a pop-up menu of

86 | Chapter4: Using Buffers, Windows, and Frames

your current buffers. (The Buffers menu at the top of the screen also shows all cur-
rent buffers.)

Hold down Ctrl and click the left mouse button.

e 00 Emacs@Debra-Camerons-Computer.local

DExH@A s Y BEPRRE XD

THE PERIOD

Iy Buffer Menu it wos the worst of times, it was the oge of
w] foolishness, it was the epoch of belief, it
W Fundamental P l+v i+ wne the cancnn nf linht i+ wne the
SE antinews.[ﬁ'ﬁj;;t * JUsers/deb/antinews.txt
: dickens JUsers /deb/dickens
o —— joyce [Users/deb/joyce

some of its noisiest outh odyssey /Users/deb/odyssey

good or for evil, in the 1 paras fUsers/deb/paras

--:---Emacs dickens ALl 14 (Text Fill)--=--ommommmmoooo oo

Emacs displays a pop-up menu of current buffers by mode (Mac OS X).

To cycle through all the buffers you have, type C-x — to go to the next buffer (in the
buffer list) or C-x < to go to the previous buffer. (Don’t hold down Ctrl while you
press the arrow key or Emacs beeps unhappily.)

Deleting Buffers

It’s easy to create buffers, and just as easy to delete them when you want to. You may
want to delete buffers if you feel your Emacs session is getting cluttered with too
many buffers. Perhaps you started out working on a set of five buffers and now want
to do something with another five. Getting rid of the first set of buffers makes it a bit
easier to keep things straight. Deleting a buffer can also be a useful emergency
escape. For example, some replacement operation may have had disastrous results.
You can kill the buffer and choose not to save the changes, then read the file again.

Deleting a buffer doesn’t delete the underlying file nor is it the same as not display-
ing a buffer. Buffers that are not displayed are still active whereas deleted buffers are
no longer part of your Emacs session. Using the analogy of a stack of pages, deleting
a buffer is like taking a page out of the current stack of buffers you are editing and fil-
ing it away.

Working with Multiple Buffers | 87

Deleting buffers doesn’t put you at risk of losing changes, either. If you’ve changed
the buffer (and the buffer is associated with a file), Emacs asks if you want to save
your changes before the buffer is deleted. You will lose changes to any buffers that
aren’t connected to files, but you probably don’t care about these buffers.

Deleting a buffer is such a basic operation that it is on the Emacs toolbar, the X sym-
bol. Now let’s learn how to do it from the keyboard to increase your fluency in Emacs.

To delete a buffer, type C-x k (for kill-buffer). Emacs shows the name of the buffer
currently displayed; press Enter to delete it or type another buffer name if the one
being displayed is not the one you want to delete, then press Enter. If you’ve made
changes that you haven’t yet saved, Emacs displays the following message:

Buffer buffer name modified. Kill anyway? (yes or no).

To ditch your changes, type yes, and Emacs kills the buffer. To stop the buffer dele-
tion process, type no. You can then type C-x C-s to save the buffer, followed by C-x k
to kill it.

You can also have Emacs ask you about deleting each buffer, and you can decide
whether to kill each one individually. Type M-x kill-some-buffers to weed out
unneeded buffers this way. Emacs displays the name of each buffer and whether or
not it was modified, then asks whether you want to kill it. Emacs offers to kill each
and every bulffer, including the buffers it creates automatically, like *scratch* and
Messages. If you kill all the buffers in your session, Emacs creates a new *scratch*
buffer; after all, something has to display on the screen!

Working with Windows

Windows are areas on the screen in which Emacs displays the buffers that you are
editing. You can have multiple windows on the screen at one time, each displaying a
different buffer or different parts of the same buffer. Granted, the more windows you
have, the smaller each one is; unlike GUI windows, Emacs windows can’t overlap, so
as you add more windows, the older ones shrink. The screen is like a pie; you can cut
it into many pieces, but the more pieces you cut, the smaller they have to be. You
can place windows side-by-side, one on top of the other, or mix them. Each window
has its own mode line that identifies the buffer name, the modes you’re running, and
your position in the buffer. To make it clear where one window begins and another
ends, mode lines are usually shaded.

As we've said, windows are not buffers. In fact, you can have more than one win-
dow on the same buffer. Doing so is often helpful if you want to look at different
parts of a large file simultaneously. You can even have the same part of the buffer
displayed in two windows, and any change you make in one window is reflected in
the other.

88 | Chapter4: Using Buffers, Windows, and Frames

The difference between buffers and windows becomes important when you think
about marking, cutting, and pasting text. Marks are associated with buffers, not with
windows, and each buffer can have only one mark. If you go to another window on
the same buffer and set the mark, Emacs moves the mark to the new location, forget-
ting the place you set it last.

As for cursors, you have only one cursor, and the cursor’s location determines the
active window. However, although there is only one cursor at a time, each window
does keep track of your current editing location separately—that is, you can move
the cursor from one window to another, do some editing, jump back to the first win-
dow, and be in the same place. A window’s notion of your current position (whether
or not the cursor is in the window) is called the point. Each window has its own
point. It’s easy to use the terms point and cursor interchangeably—but we’ll try to be
specific.

You can create horizontal windows or vertical windows or both, but personally we
place vertical windows with the more advanced esoterica near the end of the chap-
ter. Here we’ll discuss creating horizontal windows, finding a file in a new window,
and deleting windows.

Creating Horizontal Windows

The most commonly used window command is C-x 2 (for split-window-vertically).
This command splits the current window into two, horizontally oriented windows.
You can repeat this command to split the screen into more horizontal windows.

Initial state:

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

DExHBEA Y $E8BHRRQE XD

THE PERIOD

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything hefore us, we had nothing before us, we
{ were all going direct to Heawen, we were all going direct the other
-—:-- dickens Top L1 (Text Fill)-————————————————mm 4

i

Editing our trusty dickens buffer.

Working with Windows | 89

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

D xEHE OB RE XT

B
2

THE PERIOD

It was the hest of times. it was the worst of times. it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
-—:-- dickens Top L1 e _—_—, |

J THE PERIOD

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it

was the epoch of incredulity, it was the season of Light, it was the

I:[:—— dickens Top L1 [(fzzae ALl ======s=c==ss=so=co=ssssoososs=o==r|

The screen is divided into two horizontal windows; the mode line demarcates each
window.

You can also have Emacs set up windows for you when you start a session. If you
want to edit two files in horizontal windows, specify their filenames when you start
Emacs at a command prompt. For example, if you wanted to edit dickens and joyce,
you would type emacs dickens joyce and Emacs would display these files in two hor-
izontal windows. If you try this with more than two files, Emacs displays two hori-
zontal windows, with a file in one and a list of buffers in the other.

A number of the “other window” commands are just the ordinary command with a 4
inserted in it. For example, to find a file in another window, type C-x 4 f. (If only one
window is currently open, Emacs opens another one.) To select a different buffer in
another window, type C-x 4 b. Many users find these commands preferable to the
normal C-x C-f and C-x b commands because they save you a step: you need not
move to the window, give a command, and move back.

Once you’ve got multiple windows open, it’s helpful to be able to scroll them with-
out moving there. To scroll the other window, type C-M-v.

Moving Between Windows

To move from one window to another, type C-x o (o stands for other in this com-
mand). If you have more than two windows displayed, Emacs moves from one to the
next. There’s no way to specify which window to move to, so you may have to type
C-x 0 a few times to get to the one you want if you have more than two windows dis-
played. (You can also click your mouse in a window if you’re using the GUI version.)

90 | Chapter4: Using Buffers, Windows, and Frames

Now that you can create windows and can move between them, what else can you
do? Practically anything. With our two windows on dickens open, one on top of the
other. Initially, both of these windows are looking at the same file.

ocalhost.localdomain
File Edit Options Buffers Tools Help

DExHBA I ¥ BERQE XY
i B

r THE PERIOD

It was the best of times, it was the worst of times, it was the age of
f wisdom, it was the age of foolishness, it was the epoch of helief, it
—-:-- dickens Top L1 {Text Fill)-———-—-—————m—m—m - 9

J THE PERIOD

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it

f was the epoch of incredulity, it was the season of Light, it was the

--:-- dickens Top L1 (Text Fill)-———-—-—————— -

I

Two windows open on dickens.

We can give any editing commands we want within either window. We can move
back and forth in one window without affecting the other. Let’s see what happens if
we want to edit another file.

Type: C-x C-f blake

& localhost.localdomain
File Edit Options Buffers Tools Help

DExBE s 0D RE XT

[§ Mock on Mock on Voltaire Rousseau
J Mock on Mock on tiz all in wain

Tou throw the sand against the wind
and the wind blows it back again.

]
--.-- blake all 11 (EFEE 1PAILIL) ———mmm——m—m—— e 5

J THE PERIOD

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it

{ was the epoch of incredulity, it was the season of Light, it was the

-—:-- dickens Top L1 (Oifzzze RaLILL) ======s=c==ss==o=co=ssss=ooss=s=o=r|

I

Now you have two windows, two buffers, and two files.

Working with Windows | 91

By using C-x o, we can edit one file and then the other. We can kill text from one
buffer and yank it back in another. For example, let’s move the first line of Blake’s
poem to the top of the dickens buffer.

Type: C-k C-k C-x 0 M-< C-y Enter

emacs localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S $ 0D Q8 XE

[§ Hock on Mock on tis all in wain
J Tou throw the sand against the wind

And the wind blows it back again.

|
--.*+* hlake A1l L1 (Text F1ll)-—=-=m——mmmm o e oo o]
I Mock on Mock on Woltaire Roussean

d

THE PERIOD

f It was the best of times, it was the worst of times, it was the age of
—-:** dickens Top L3 {Text Fill)-———-—-—————m—m—m oo 9

k4

The Blake text has been yanked into the dickens buffer.

Editing with multiple buffers in separate windows is particularly useful if, for exam-
ple, you want to copy material from one file to another or if you want to read a file
containing reference material while editing another. Programmers often need to look
at several different files at the same time—for example, a header file and a code file,
or a function call site and the routine that’s being called. Once you get used to the
commands for moving between different windows, you may spend most of your time
with two or three windows on your screen.

Getting Rid of Windows

Deleting a window only means that it isn’t displayed anymore; it doesn’t delete any of
the information or any of your unsaved changes. The underlying buffer is still there,
and you can switch to it using C-x b. To delete the window you’re in, type C-x 0
(zero). If you want to delete all windows but the one you’re working on, type C-x 1
(one), meaning “make this my one and only window.” As you’d expect, the remaining
window “grows” to fill up the rest of the space. You can also delete all windows on a
certain buffer by typing: M-x delete-windows-on Enter buffername Enter.

92 | Chapter4: Using Buffers, Windows, and Frames

Working with Frames

By now you know that Emacs calls GUI windows “frames.” In this section, we’ll
cover how to create frames, navigate between frames, and delete frames.

Creating a New Frame

To open a new frame, type C-x 5 2 (for make-frame). Emacs makes a new frame con-
taining the current buffer and puts it on top of the current frame.

If your new frame completely overlaps your current frame, you may need to size the
new frame to tell them apart. For a more convenient solution, add these lines to your
.emacs file:

(setq initial-frame-alist '((top . 10) (left . 30)

(width . 90) (height . 50)))

(setq default-frame-alist '((width . 80) (height . 45)))
These lines set up sizes for the width and height of Emacs frames. The first frame is
the size set in initial-frame-alist (in this example, 90 characters wide by 50 lines high
with top and left defining an inset), and subsequent frames, specified by default-
frame-alist, will be 80 characters wide and 45 lines high. Depending on your dis-
play, you can make these numbers smaller or larger.

Here we edit a bit of Henry James.

Type: Cx52

¥ james = 0 X|
File Edit Optians Buffers Todls Help

DExEHEBEA S $BaHE XE

also = woman, sends me the following

My second correspondent,

stata_ .. x
File Edit Options Buffers Tools Help
4 a| = o
DExEHEBE S $ BHRE XL
Igi;ze I My second correspondent, also a woman, sends me the following
state statement
7 Life seemed difficult to me at one time. I was always bresking down,
e o and had several attacks of what is called nervous prostration, with
'I--r] terrible insomnia
Here is another case, more concrete, also that of a woman. I read you
these cases without comment--they express so many varieties of the
state of mind we are studying.
7
——:*+ james a1l L3 (Text Fill)]
¥

Emacs opens a new frame titled james

Working with Frames | 93

Frame Names

Note the title of your new frame. The first frame in your session, your initial Emacs
frame, displays Emacs@system name at the top (or Emacs’s best guess at the system
name). Any other frames you create display the buffer name at the top. In fact, once
you have multiple frames, all frames display the buffer name as their title. If you delete
all frames but one, the title once again reverts to Emacs@system name.

Let’s say we want to open a frame on our dickens buffer.

Type: C-x 5 f dickens Enter

¥ james -0
File Edit Options Buffers Tools Help

DExHE S $EBRIEXG

[y =econd correspondent, also a woman, sends me the following
state | james =
File Edit Options Buffers Tools Help

OExEBE S %

[dickens
File Edit Options Buffers Tools Help

paking down,
D&X%%% ption, with

[§ tMock on Mock on ¥oltaire Roussean K wou
he

I
THE PERIOD

It was the hest of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of helief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything hefore us, we had nothing bhefore us, we

were all going direct to Heawen, we were all going direct the other P
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.

7
—-:** dickens A1l L4 (Text Fill) {
4

Emacs opens a new frame on dickens.

If you type C-x b to move to another buffer, the name at the top of the frame changes
to the new buffer’s name (and on Linux, it shows the path as well). To move to a
buffer and put it in a new frame, type C-x 5 b. You might have guessed that one.

94 | Chapter4: Using Buffers, Windows, and Frames

Moving Between Frames

You can move between frames in several ways. You can use the mouse to select a
frame or press C-x 5 0 to go to another frame. To see a list of current frames, select
Frames from the Buffers menu. (If you have only one frame, the Frames option does
not appear on this menu.)

Deleting and Minimizing Frames

To get rid of a frame, press C-x 5 0. Emacs deletes the frame you are in. Deleting a
frame, like deleting a window, affects only the display. The underlying buffer is still
active, and you can move to it by typing C-x b.

If you try to use C-x 5 0 to delete the only frame that is left, Emacs won’t do it. To
exit Emacs, type C-x C-c or close the frame as you would any other GUI window
using the mouse.

To minimize a frame, either minimize it in the usual way or press C-z. Table 4-1
summarizes the frame commands.

Table 4-1. Frame commands

Keystrokes Command name Action

(x50 other-frame Move to other frame.

Buffers — Frames

(x50 delete-frame Delete current frame.

File — Delete frame

(x52 make-frame Create a new frame on the current buffer.

File — New Frame

Cx5f find-file-other-frame Find file in a new frame.

Cx5r find-file-read-only-other-frame Finds a file in a new frame, but it is read-only.
Cx5b switch-to-buffer-other-frame Make frame and display other buffer in it.

More About Buffers

In this section, we’ll learn about saving multiple buffers, renaming buffers, read-only
buffers, and operations you can do with the buffer list—not only a useful tool but a
good introduction to the principles you’ll encounter in the directory editor, Dired,
covered in Chapter 5.

Saving Multiple Buffers

You know about saving buffers individually by typing C-x C-s. Once you’re using
multiple buffers, you should also know that you can save them all at once by typing
C-x s (for save-some-buffers). Emacs asks you if you want to save each buffer that is

More About Buffers | 95

connected with a file (it doesn’t offer to save new buffers you’ve created but have not
associated with a file and, of course, it doesn’t save its own internal buffers). For
each buffer, you can answer y to save it or n not to. You can also type ! to save all the
buffers without asking. If you want to save this buffer and no more, type a period (.).
If you want to cancel the command and not save the current buffer, press q (of
course, any buffers you saved before pressing q are already saved; q does not undo
those). You may want to look at the buffer before deciding whether to save it; if so,
type C-r. Emacs enters view mode, allowing you to look at the buffer but not make
changes. Press q to exit view mode and continue saving buffers.

Renaming Buffers

When you are editing a file, the buffer takes on the name of the file. If you have long
filenames, you may find it convenient to rename buffers to shorter names (this
renaming doesn’t affect the filename, just the buffer name). This feature is mostly
useful on versions of Emacs that don’t offer good completion capabilities; in GNU
Emacs, whenever you have to type a buffer name, you just type the first few unique
letters and press Tab to have Emacs complete the name for you. In some circum-
stances, you may want to rename buffers.

To rename a buffer, type M-x rename-buffer. Emacs asks for the new name; type it
and press Enter. The new name is displayed on the mode line. Renaming buffers
comes in particularly handy in shell mode, described in Chapter 5. You start one
command shell, and then rename the buffer and start another, in this way running as
many shells as you have use for simultaneously.

As mentioned earlier, in GNU Emacs only the buffer name is displayed on the mode
line, rather than the buffer name and the filename. Even if you rename a buffer that
contains a file, Emacs remembers the connection between buffer and file, which you
can see if you save the file (C-x C-s) or display the buffer list (described later in the
chapter).

What if you have two buffers with the same name? Let’s say you are editing a file called
outline from your home directory and another file called outline from one of your sub-
directories. Both buffers are called outline, but Emacs differentiates them by append-
ing <2> to the name of the second buffer. (You can tell which is which by looking at the
bulffer list, discussed later in this chapter.) Emacs offers an option that adds a directory
to buffers in this situation: select Use Directory in Buffer Names from the Options
menu. Let’s say you've turned on this option and are editing a file called .localized;
Emacs will call this buffer simply .localized. Now you find a second file of the same
name from a subdirectory. Instead of calling this buffer .1localized<2>, Emacs names
the buffer directory/.localized, making it easy for you to tell the buffers apart at a
glance. This option has some limitations. It shows only the parent directory, not the
full path, and it shows directory names only if multiple buffers have the same name.

96 | Chapter4: Using Buffers, Windows, and Frames

We wish it would go a bit further and provide the option of including the directory on
the mode line for all buffers.

One word of advice: if you have a lot of buffers with names like proposal, proposal <25,
and proposal<3> around, you're probably forgetting to edit the directory when you ask
for a file. If you try to find a file but get the directory wrong, Emacs assumes you want
to start a new file. For example, let’s say you want to edit the file ~/work/proposal, but
instead ask for the file ~/novel/proposal. Since ~/novel/proposal doesn’t exist, Emacs cre-
ates a new, empty buffer named proposal. If you correct your mistake (C-x C-f ~/work/
proposal), Emacs renames your buffers accordingly: your empty buffer proposal is
associated with ~/novel/proposal; the buffer you want is named proposal<2>.

Here’s a hint for dealing with the very common mistake of finding the wrong file. If
you notice that you’ve found the wrong file with C-x C-f, use C-x C-v to replace it
with the one you want. C-x C-v finds a file, but instead of making a new bulffer, it
replaces the file in the current buffer. It means “get me the file I really meant to find
instead of this one.” Using this command circumvents the problem of having unnec-
essary numbered bulffers (i.e., proposal, proposal<2>, and so on) lying around.

Read-Only Buffers

While you’re working, you may need to read some file that you don’t want to
change: you just want to browse through it and look at its contents. Of course, it is
easy to touch the keyboard accidentally and make spurious modifications. We’ve
discussed several ways to restore the original file, but it would be better to prevent
this from happening at all. How?

You can make any buffer read-only by pressing C-x C-q. Try this on a practice buffer
and you’ll notice that two percent signs (%%) appear on the left side of the mode line,
in the same place where asterisks (**) appear if you’ve changed a buffer. The percent
signs indicate that the buffer is read-only.” If you try to type in a read-only buffer,
Emacs just beeps at you and displays an error message (Buffer is read-only) in the
minibuffer. What happens when you change your mind and want to start editing the
read-only buffer again? Just type C-x C-q again. This command toggles the buffer’s
read-only status—that is, typing C-x C-q repeatedly makes the buffer alternate
between read-only and read-write.

Of course, toggling read-only status doesn’t change the permissions on a file. If
you are editing a buffer containing someone else’s file, C-x C-q does not change
the read-only status. One way to edit someone else’s file is to make a copy of your
own using the write-file command, and then make changes. Let’s say you want to

* The exception to the rule that ** means changed and %% means read-only is the *scratch* buffer. Because
Emacs doesn’t warn you if you kill the *scratch* buffer, even if it is changed, it wants to give you some indi-
cation that there are unsaved changes. Instead of %%, the *scratch* buffer puts %* on the mode line.

More About Buffers | 97

change a proposal that is owned by someone else. Read the file, write the file as
one you own using C-x C-w, then change it from read-only to writable status by
pressing C-x C-q. None of this, of course, modifies the original file; it just gives
you a copy to work with. If you want to move a minor amount of text from a read-
only file to another, you can mark the text then press M-w to copy it. Move to the
place you want to put the text and press C-y to paste it.

You can open a file as read-only in a new window by typing C-x 4 r or in a new frame
by typing C-x 5 r. This is one of a number of commands in which 4 means window
and 5 means frame.

Getting a List of Buffers

Because you can create an unlimited number of buffers in an Emacs session, you can
have so many buffers going that you can’t remember them all. At any point, you can
get a list of your buffers (yes, we know you know how to do that by holding down
Ctrl and clicking the left mouse button, but this is a little different). This list pro-
vides you with important information—for example, whether you’ve changed the
buffer since you last saved it.

If you press C-x C-b, Emacs lists your buffers. It creates a new *Buffer List* win-
dow on the screen, which shows you all the buffers.

Type: C-x C-b

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

D xEHES ObhRE XT

[§ were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being received. for

J” Food or for evil, in the superlative degree of comparison only.

-—:—- dickens 57% 113 (Text Fill) {
CEM Buffer Size HMode File
[§ [* *shell* 18 5Shell o
= blake 136 Text ~/literature/blake
dickens 637 Text ~fdickens
* james 404 Text ~fliterature/james
I = ~ 20689 Dired by name o
F%: £* *Buffer List* Top L1 (Buffer Menu)

Emacs displays a list of buffers.

You can use this list as an informational display (“these are my buffers”) or you can
actually work with buffers from this list, as covered in the next section.

Figure 4-3 shows what each of the symbols in the buffer list means.

98 | Chapter4: Using Buffers, Windows, and Frames

Major mode

L File being edited
Buffer name Size in bytes

and its path)

(lhd emacs@localhost.localdomain 7 x
File Edit Options Buffers Tools Help
D& x 3
i d(%lﬂtfj.’n[, FM Euffer Size Mode File
odified or + *shell* 18 shell wf
read—o'nly B blake 136 Text ~fliterature/hlake
dickens 637 Text ~fdickens
* james 404 Text ~fliterature/james
o~ 20689 Dired by name s
joyce 0 Text
scratch 0 Lisp Interaction
marzipan.java 63 Java ~/programs/javas/mnarzipan. java
% java 268 Dired by name ~/programs/Javas
% programs 314 Dired by name ~fprograms/
strongbad.c 40 ¢ ~/programs/c/strongbad. c
-u:%* *Buffer List* Top L2 (Buffer Menu)]
X
CRM - Key
. 0 .
. - displayed % - readonly > - marked for display
*_ modified D - marked for deletion S - marked for saving

Figure 4-3. Understanding the buffer list

Working with the Buffer List

The buffer list is more than a display. From the buffer list, you can display, delete,
and save buffers. To move to the buffer list window, type C-x 0. Emacs puts the cur-
sor in the first column. For a particular buffer, press n or C-n to move down a line or
p or C-p to move up a line. You can also press Space to move down to the next line
and Del to move up. (The up and down arrow keys work, too.) This array of up and
down choices may seem confusing, but multiple bindings are given to make it easy to
move up and down without consulting a book like this one.

You use a set of one-character commands to work with the buffers that are listed. To
delete a buffer, go to the line for the buffer you want to delete and type d or k. The
letter D appears in the first column. You can mark as many buffers for deletion as you
want to. The buffers aren’t deleted immediately; when you’re finished marking buff-
ers, press x (which stands for “execute”) to delete them. If any of the buffers you
want to delete are connected with files, Emacs asks if you want to save the changes
before doing anything. (Note that it does not ask you about buffers that aren’t con-
nected with files, so be sure to save any that you want before deleting them.)

If you change your mind about deleting a buffer before typing x, you can unmark the
buffer by going to the appropriate line and typing u. As a convenience, the Del key
also unmarks the previous buffer in the list. Why would you do this? Simple: d auto-
matically moves you down one line. If you mark a file for deletion and immediately
change your mind, you can press a single Del rather than moving to the previous line
and typing u for unmark).

More About Buffers | 99

To save a buffer, go to the line for the buffer you want to save and press s. The letter
S appears in the first column. Press x when you really want to save the buffer. There-
fore, you can look at the buffer list, choose which buffers you want to delete and
which you want to save, and then type x to do everything at once. Again, you can
press u or Del to cancel saves if you change your mind.

One command that affects a buffer immediately when you type it is tilde (~). Typing
~ marks a buffer as unmodified. In effect, this symbol tells Emacs not to save changes
automatically (since the buffer is unmodified, Emacs has no reason to save changes
with its auto-save feature). Of course, if you have made changes, the changes are still
in the buffer; it’s just that you’re in essence “lying” to Emacs to say that no changes
have been made. Also, if you change the buffer again after marking it unmodified,
Emacs once again knows it has been modified and saves it automatically in a backup
file. The backup filename (not coincidentally) has the format filename~.

You can change a buffer’s status from read-write to read-only and back again by
pressing %. Pressing % changes the buffer’s status immediately. Percentage signs
appear on the mode line when a buffer is read-only. When you are editing, you can
toggle a buffer between read-write and read-only by pressing C-x C-q, as we dis-
cussed earlier.

You can also use the buffer list to display multiple buffers in windows. To display
one of the buffers in a full screen, move the cursor into the buffer list’s window; use
C-n and C-p to move to the line for the buffer that you want, and press 1 (the num-
ber one). Emacs displays the buffer in a full-screen window.

If you want to display one of the buffers in place of the buffer list, you can press f. To
put a buffer in another window (i.e., one not occupied by the buffer list), type 0. Emacs
displays the buffer in the other window and puts the cursor there. Pressing C-o has a
slightly different result; Emacs displays the buffer in another window but doesn’t put
the cursor there.

One final buffer display command remains. You can ask Emacs to display multiple
buffers and have Emacs create windows for them dynamically. To select buffers to be
displayed in windows, press m (for mark) next to the buffers you want. Emacs dis-
plays a > next to the buffers you mark with m. To tell Emacs to display the buffers
you’ve marked, press v. Emacs makes horizontal windows to display the buffers
you’ve chosen.

To get rid of the *Buffer List* window, type C-x 0 if you are in the buffer list win-
dow or C-x 1 (the number one) if you are in another window. Table 4-2 shows a
summary of buffer manipulation commands.

100 | Chapter4: Using Buffers, Windows, and Frames

Table 4-2. Buffer manipulation commands

Keystrokes
Cxb

Command name Action

switch-to-buffer Move to the buffer specified.

Buffers — Select Named Buffer

Cx — next-buffer Move to the next buffer in the buffer list.

Buffers — Next Buffer

X previous-buffer Move to the previous buffer in the buffer list.
Buffers — Previous Buffer

CxCb list-buffers Display the buffer list.

Buffers — List All Buffers

Cxk kill-buffer Delete the buffer specified.

(none) kill-some-buffers Ask about deleting each buffer.

(none) rename-buffer Change the buffer's name to the name specified.
Cxs save-some-buffers Ask whether you want to save each modified buffer.

Table 4-3 summarizes the commands for working with the buffer list.

Table 4-3. Buffer list commands

Keystrokes

C-n, Space, n,or |
Cp,por T

d

k

Action

Move to the next buffer in the list (i.e., down one line).
Move to the previous buffer in the list (i.e., up one line).
Mark buffer for deletion.

Mark buffer for deletion.

Save buffer.

Unmark buffer.

Execute other one-letter commands on all marked buffers.

Unmark the previous buffer in the list; if there is no mark, move up one line.

Mark buffer as unmodified.

Toggle read-only status of buffer.

Display buffer in a full screen.

Display this buffer and the next one in horizontal windows.

Replace buffer list with this buffer.

Replace other window with this buffer.

Mark buffers to be displayed in windows.

Display buffers marked with m; Emacs makes as many windows as needed.
Quit buffer list.

Occurs
Immediately
Immediately
When you press x
When you press x
When you press x
Immediately
Immediately
Immediately
Immediately
Immediately
Immediately
Immediately
Immediately
Immediately
When you press v
Immediately

Immediately

More About Buffers |

101

More About Windows

Depending on your requirements, you may want to work with side-by-side windows
in addition to or instead of horizontal windows. For finer control, you may want to
know how to size windows (and because they’re not GUI windows, you can’t do that
with the mouse).” You may also want to know how to compare files between win-
dows, a good feature for basic file comparison.

Creating Vertical or Side-by-Side Windows

To split the window vertically into two side-by-side windows, type C-x 3. You can
execute this step repeatedly to create more side-by-side windows.

Type: Cx3

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DEx HE S b8 XD

X B

THE FERIOD

It was the hest of times, it was the 3
wisdom, it was the age of foolishness3
was the epoch of incredulity, it was 2
seagson of Darkness, it was the spring?
despair, we had everything hefore us, 3
were all going direct to Heaven, we w3

[E

THE PERIOD

It was the best of times, 1t was the?
wisdom, it was the age of foolishnes3
was the epoch of incredulity, it was3
season of Darkness, 1t was the sprind
despair, we had everything hefore us3
were all going direct to Heawen, we 2

way--in short, the period was so far 2
some of its noisiest authorities insi2ff ¥
dickens

way--in short, the period was so far?
some of its noisiest authorities ins3
dickens

7

4

Top L1 (Text Fil--:.-- Top L1 (Text Fi

Emacs creates two vertical windows.

When you create multiple vertical windows, Emacs usually doesn’t have enough
room to display a full line of text. Because vertical windows don’t usually show full
lines of text, a right arrow (on graphical implementations) or a dollar sign (on termi-
nal-based implementations) at the end of a line tells you the line is continued.

To see the rest of the line, you need to know how to scroll text to the left and right. To
push the text currently being displayed to the left (so you can see what’s on the right),
type C-x <. Left arrows or dollar signs are displayed on the left side of the window to
indicate that there is more text to the left. To push the text being displayed to the right
(so you can see what’s on the left), type C-x >. You can use these commands whenever
one of your lines is too wide, which can happen with or without windows.

* It’s true that you can’t resize Emacs windows using the mouse. But if you resize an Emacs frame, it does
impact the size of the windows, even eliminating windows at times if the frame cannot display all the win-
dows. Of course, as always, eliminating a window doesn’t impact the underlying buffer.

102 | Chapter4: Using Buffers, Windows, and Frames

Navigating Windows

How do you move between windows? As we mentioned earlier, C-x o moves you to
the “next” window. But how does Emacs determine what that is?

The best way to express it is to say that Emacs moves through the windows in natu-
ral reading order, from left to right, then down, and again from left to right. In
Figure 4-4, buffer names are numbered to show you how Emacs moves from one
window to the next.

eo0e Emacs@Alacrity.local

DB x BEAE S & D8 XE

I I

--:---Emocs one ALY (--:---Emocs two All L1 C

| I
L

--i---Emocs three --:i---FEmocs Four --:i---Emocs five

--:---Emocs six All L1 (Fundamental)---------------—-—---———————___

--:---Emacs seven All L1 (--:---Emacs eight All L1 [¢
VA

TR R S————

Figure 4-4. Moving between windows (Mac OS X)

Alternatively, you can simply select the window you want using the mouse.

More About Windows | 103

Enlarging and Shrinking Windows

Emacs always splits windows into two equal parts. Such a split is often good enough,
but sometimes it’s not, particularly if you become a window aficionado. When you
have four or five or six windows on your screen at once, controlling each window’s
size becomes important. Otherwise, the windows you are most interested in will
eventually become too small, and useful editing is almost impossible when you can
see only five or six lines from a file. If you want to make the window you’re working
on taller, type C-x . Emacs lengthens the current window and makes the one below
it smaller, accordingly. To make the current window wider, type C-x }. Emacs makes
this window wider, at the expense of the one to the right of it.

To make windows smaller, you can shrink them. To shrink a window vertically, type
M-x shrink-window. Emacs shrinks the current window by one line and the other win-
dows on the screen grow accordingly. To shrink a window horizontally, type C-x {.
This command makes the window one column narrower and enlarges the other win-
dows on the screen horizontally.

Usually you want to work in larger increments than one line or one column at a time,
however. When you type C-u preceding any of these commands, the command
works in increments of four lines or columns at a time. For example, with two hori-
zontal windows on the screen, let’s use C-u C-x * to enlarge the james window.

Type: C-uCx A

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Help

DExHdEBE S ¥ BB Q8 XT
T 0

/ THE PERIOD

——:—— dickens Top L1 T I
[§ Ty second correspondent, also a woman, sends me the following
statement:

Life seemed difficult to me at one time. I was always breaking down,
and had several attacks of what is called nervous prostration, with
terrible insomnia. . .

Here is another case, more concrete, also that of a woman. I read you
these cases without comment--they express so many wvarieties of the
state of mind we are studying.

-—.** james a11 1.1 (Text Fill)-————-——m oo oo 4

¥ c-uc-x=~

Emacs makes the current window larger.

As you would expect, when you make the window larger, it automatically fills with
more text from the buffer. There are shortcuts to sizing windows as well. If you have a
very small buffer—for example, a one-line buffer containing the vocabulary-building
word for the day and its definition—you can shrink the window to the size of the
buffer by typing C-x - (for shrink-window-if-larger-than-buffer). If the buffer is larger

104 | Chapter4: Using Buffers, Windows, and Frames

than the window, this command does nothing. Typing C-x + (for balance-windows)
creates windows of equal size again. (This latter command is also useful if you have an
odd number of windows; C-x + divides the display equally among them.)

Limits on Window Size

Windows in Emacs can be as big as your screen. There’s a limit to how small win-
dows can be, however, and this limit is specified by the variables window-min-
height (whose default is four lines) and window-min-width (whose default is ten
characters). If you enlarge other windows to the point that their counterparts
become less than ten characters wide or four lines high, Emacs deletes the smaller
windows. You can set these variables to other values if you want to; more informa-
tion on setting variables is found in Chapter 10.

Comparing Files Between Windows

Especially if you’re looking for minute differences between large files, the compare-
windows command comes in handy. To use compare-windows, you must first have
the buffers you want to compare in two windows, either side by side or horizontally.
Go to the beginning of each buffer, then type M-x compare-windows. Emacs scrolls
each buffer to the place where the discrepancy is. It places the point in each buffer at
the place of the discrepancy, so using C-x o to move the cursor between buffers will
show you exactly where the files differ.”

Of course, this maneuver finds only the first difference between the two buffers. Find-
ing the second, third, and so on, is a bit tricky. The compare-windows command
works only if the point in both buffers is in exactly the same place. Therefore, you
need to move past the discrepancy in both buffers before you can type M-x compare-
windows again. The Unix diff command provides a more comprehensive (although
somewhat awkward looking) way to find the differences between two files. Emacs
also provides an interface to Ediff, with options on the Compare menu (a submenu of
the Tools menu). Ediff is far more comprehensive; see Chapter 12 for details.

Table 4-4 summarizes the window commands discussed in this chapter.

Table 4-4. Window commands

Keystrokes Command name Action

(x2 split-window-vertically Divide current window into two
File — Split Window windows, one above the other.
(x3 split-window-horizontally Divide current window into two

side-by-side windows.

* You can have more than two windows on the screen, but only two are compared: the one the cursor is in and
the next window (remember that the next window is either to the right or down if there is no window to the
right).

More About Windows | 105

Table 4-4. Window commands (continued)

Keystrokes
Cx>
Cx<

Cxo

Cx0

Cx1
File — Unsplit Windows

(none)

CxA
(none)
Cx}
Cx{
Cx-

Cx+
C-M-v
Cx4f
Cx4b

(none)
Tools — Compare (Ediff) —
This Window and Next Window

Command name
scroll-right
scroll-left

other-window

delete-window

delete-other-windows
delete-windows-on

enlarge-window
shrink-window
enlarge-window-horizontally
shrink-window-horizontally

shrink-window-if-larger-than-buffer

balance-windows
scroll-other-window
find-file-other-window
switch-to-buffer-other-window

compare-windows

Action
Scroll the window right.
Scroll the window left.

Move to the other window; if there
are several, move to the next win-
dow (see “Navigating Windows").

Delete the current window.

Delete all windows but this one.

Delete all windows on a given
buffer.

Make window taller.
Make window shorter.
Make window wider.
Make window narrower.

Make window smaller if buffer is
smaller than window.

Make windows the same size.
Scroll other window.
Find a file in the other window.

Select a buffer in the other win-
dow.

Compare this window with the
next window and show the first
difference.

Holding Your Place with Bookmarks

Once you start working with multiple files, remembering just where you were in
each one becomes harder. Bookmarks provide a convenient way of marking your
place in a file, a place you can easily return to. You might, for example, be working
with a file that has a long pathname. Rather than retype the pathname each time you
start Emacs, you could just jump to a bookmark you’ve named current project by
having Emacs find the file and put the cursor wherever you set the bookmark.

Bookmarks make the process of finding your place in any file easier. Particularly if
you are working on a project several directories down from your home directory or
in a totally different filesystem, putting bookmarks in the file makes it easy to get

back there.

106 | Chapter4: Using Buffers, Windows, and Frames

When you create a bookmark, Emacs creates a bookmark file in your home direc-
tory, called .emacs.bmk. It saves any new bookmarks in this file automatically when
you exit Emacs.

Bookmarks are stored by user. If you and others access the same online documenta-
tion set, you can hold your place with your bookmark and they can hold their places
with theirs, never interfering with each other’s reading.

From the Edit menu, you can access the Bookmarks menu, which lists all the book-
mark commands you’ll probably ever need. We feel the menu interface for book-
marks is particularly well developed; even if you don’t normally use menus, you
might want to make an exception in this case. (At least until you learn the com-
mands. Bookmarks are addictive, and when you use them frequently, the commands
are easier to type than to reach by menu.)

Setting Bookmarks

To place a bookmark at the cursor position, type C-x r m (for bookmark-set). Emacs
asks for a bookmark name, which can be virtually any length (practically speaking, as
long as the width of your display) and can include spaces (so current project or Moore
proposal’s greatest flaw or Othello Act 2 Scene 4 would all be fine). Emacs also
puts a default bookmark in parentheses, suggesting the filename if you haven’t used a
bookmark during this session (in which case it uses the bookmark name). Either press
Enter to accept the default or type a bookmark name and then press Enter. You now
have a bookmark you can jump to at any time, in any Emacs session.

One subtlety: if you give a new bookmark the same name as an old one, Emacs
assumes you just want to move the bookmark, even if it was formerly in another
file. So remember to make bookmark names unique unless you are really trying to
move them.

Moving to a Bookmark

To move to a bookmark, press C-x rb (for bookmark-jump). Type the bookmark’s
name, or type the first few letters and press Tab. Emacs either finishes the book-
mark’s name or gives you a window of possible choices. Press Enter after the book-
mark’s name appears. Emacs retrieves the file and places the cursor at the bookmark
location; the file is retrieved no matter how complicated its path is.

With menus, there’s an easier way to move to a bookmark. When you select Edit —
Bookmarks — Jump to Bookmark, Emacs displays a window of available book-
marks. Select the bookmark you want, and Emacs displays the file with the cursor in
the bookmark’s position. This is useful if you have set many bookmarks, but we pre-
fer to stick with the keyboard as much as possible.

Holding Your Place with Bookmarks | 107

Renaming and Deleting Bookmarks

You may find that you made the name of your bookmark too generic; current
project may be too vague if you are juggling projects and the one in your hand is the
current one. To rename a bookmark, type M-x bookmark-rename. If you do the
renaming from the keyboard, Emacs prompts 01d bookmark name: and you type the
old name and press Enter. (If you use the menus, you select the old name from a
window instead.) Then Emacs asks, New name: and you type the new name and press
Enter, all very straightforwardly. Renaming a bookmark does just that and nothing
else: it doesn’t change the bookmark’s location or its contents; it simply changes its
name.

To delete a bookmark, press M-x bookmark-delete. Type the name of the book-
mark to delete or select it with the mouse. Deleting a bookmark doesn’t in any way
affect the file that was marked.

This discussion brings up an interesting question. What happens if you delete text in
a file in which you’ve put a bookmark? Because a bookmark points to a position in a
file and not to a piece of text, the bookmark stays in the same place after the text is
deleted, just as the cursor remains in the same place after you delete several para-
graphs. This fact is more intuitive than it sounds. You don’t delete bookmarks by
deleting marked text. Let’s say you have a file with four lines. You bookmark the
third line, then later delete lines two through four. When you jump to that book-
mark again, it appears after the first line, the end of the file.

Inserting text works the same way. Bookmarks point to a position in a file, not to
text. If you insert a new line before the third line, the bookmark remains at the point
in the file where you set it, in this case, the beginning of the new line. If you move
text around, the bookmark points to the same location in the file, the line and col-
umn where you set it.

What happens if you delete a file that has a bookmark in it? If you delete the whole
file or even rename it and then try to access a bookmark attached to the file, Emacs
gives you the following error message:

filename nonexistent. Relocate "bookmark name”? (y or n)

If you press y, you can give a new path to the file, which works well if you really just
renamed or moved the file but didn’t delete it. If you press n, however, Emacs gives
you a message, along with some advice:

Bookmark not relocated, consider removing it

In other words, Emacs argues that no one needs bookmarks to nonexistent files, and
we're inclined to agree.

108 | Chapter4: Using Buffers, Windows, and Frames

Working with a List of Bookmarks

Remember the buffer list we discussed earlier in this chapter? Bookmarks have a sim-
ilar list with one-letter commands that allow you to work with all your bookmarks at
once.

To work with a list of bookmarks, type C-x r 1 (the lowercase letter “L”). The
Bookmark List buffer appears.

Type: C-xrl

emacs®localhost.localdomain
File Edit Options Buffers Tools Help

OB x B Q&8 X0

1 % Bookmark
B & Tale of Two Cities shome /deb/literature /dickens
Address template Shome Adeb /hitml faddress. html
*Installation session for 21. /home/deb/sysadm,/21-3-Sinstall
Marzipan shome fdeh fprograms/Java/marzipan. java
Portrait of a Lady shome /deb/literature /james
Stronghadia shome /deb fprograms/c/stronghad. ¢
The dot confiqure step shome fdeb fsysadn,21-3-5install
*cd to Emacs directory shome /deb /sysadn/21-3-5install
-u:%* *Bookmark List* &ll L3 (Bookmark Menu)-—-—-—-—-—————————————————————— 4

I

Emacs displays a list of bookmarks and the path to the associated files.

If you press Enter, f, or j, Emacs displays the bookmarked file with the cursor in the
bookmarked location. From the bookmark list, press d to mark bookmarks for dele-
tion, then x to delete them (unlike in the buffer list, in the bookmark list, deleting is
the only reason you need the x command). If you change your mind, press Del to
remove the d before you press x. Pressing r renames a bookmark, and Emacs
prompts you for the new name. To save all the bookmarks, press s. You can mark
several bookmarks and then display their associated files by typing m next to the
bookmarks. A > appears beside bookmarks you’ve marked. When you’ve marked all
you want, type v (for view) and Emacs pulls up the files associated with the book-
marks and displays them in multiple windows (with the cursor at the bookmarked
location, of course). If you just want to move to one bookmarked file, you can press
v without marking the bookmark first.

You can change the display of the bookmark list slightly by pressing t. By default, the
list shows a bookmark’s name, followed by the complete path to the file with which
it is associated. If you press t (for toggle), only the bookmark names appear.

Holding Your Place with Bookmarks | 109

Table 4-5 summarizes the bookmark list commands. It includes a few commands
relating to annotations; we’ll cover these in the next section.

Table 4-5. Commands for editing the bookmark list

Command Action

Enter, f, orj Go to the bookmark on the current line.

Cooro Open the bookmark on the current line in another window; o moves the
cursor to that window; C-o keeps the cursor in the current window.

d, C-d, ork Flag bookmark for deletion.

r Rename bookmark.

s Save all bookmarks listed.

m Mark bookmarks to be displayed in multiple windows.

v Display marked bookmarks or the one the cursor is on if none are
marked.

t Toggle display of paths to files associated with bookmarks.

w In the minibuffer, display location of file associated with bookmark.

X Delete bookmarks flagged for deletion.

u Remove mark from bookmark.

Del Remove mark from bookmark on previous line or move to the previous
line (if there is no mark).

q Exit bookmark list.

Spaceorn Move down a line.

P Move up a line.

| Load a bookmark file (other than the default).

A Display all annotations.

a Display annotation for current bookmark.

e Edit (or create) annotation for the current bookmark.

Annotating Bookmarks

You can add annotations to your bookmarks. These annotations can provide any
type of information you want: details about the file in question, what you are doing
with it, documentation for someone else on your project to review when looking at
your files, or really anything you want.

Annotations are most easily added from the bookmark list itself. Open the book-
mark list using C-x r 1, then move to the line of the bookmark you want to annotate.
Type e, the command to edit an annotation.

110 | Chapter4: Using Buffers, Windows, and Frames

From the bookmark list, type: e

emacs® localhost.localdomain
File Edit Options Buffers Tools Help

D xEHES BhE XT

[§ % Booknmark
0 & Tale of Two Cities Jhome/deb/literature/dickens
Address template Jhome /deb/html faddress. himl
*Installation session for 21, /home/deb/sysadm/21-3-5install
Marzipan Jhome SdebAprograns Sjavas/marzipan. java
Portrait of a Lady Jhome /deb/literature/Jamnes
-1:%* *Bookmark List* Top L3 (Bookmark Merm)
[# Type the arnotation for bockmark 'a Tale of Two Cities' here.
Bll lines which start with a '#' will be deleted.
Type C-c C-c when done.
*
Author: Deb Cameron <deb@localhost.localdomain:
Date: Sat Aug 14 14:05:50 2004
¥ |
-u:** *Bookmark Amnotation Compose*¢2» all L7 (Edit Bookmark Annotation Fill
4

Emacs opens a *Bookmark Annotation Compose* window.

Emacs provides some guidance in this buffer about what to do. It says that all lines
that start with a comment mark (#) will be deleted and that you press C-c C-c to
save and exit the annotations buffer.

The annotation includes lines that are commented out and won’t become part of the
annotation, but if you’d like to keep the Author and Date lines (logical portions of an
annotation), just uncomment those lines by deleting the initial #. You then add any
annotation you would like and press C-c C-c to exit the window.

Annotations exhibit a couple of behaviors that are at least annoying if not bugs. First,
Emacs defines a # as the default fill prefix. You must either change that (see
Chapter 6 for details) or delete the initial # if Emacs inserts it. Second, and more crit-
ically, Emacs doesn’t automatically save annotations when you exit Emacs. If you set
a bookmark, Emacs saves the bookmarks file automatically (and in fact without ask-
ing). If you set an annotation but do not add or move a bookmark during the ses-
sion, you must save the bookmarks file manually by typing M-x bookmark-save.

After you add an annotation, Emacs puts an asterisk (*) before the bookmark name
as a visual indication that the bookmark has been annotated. To display an annota-
tion for the current bookmark, press a. To display all annotations, press A.

When you jump to a bookmark or move to a bookmarked file from the bookmark
list, annotations are automatically displayed in another window (but don’t edit
them in this window; you must use the procedure described earlier). If you open
the bookmarked file some other way (using C-x C-f, for example), annotations are
not displayed.

Holding Your Place with Bookmarks | 111

A Few More Bookmark Commands

In addition to those we’ve discussed, there are a few more esoteric bookmark com-
mands. These include bookmark-insert, which inserts the text of the bookmarked
file at the cursor position; bookmark-write, which prompts for a new filename in
which to save bookmarks; and bookmark-load, to load these separate bookmark
files. These commands are less useful than the others, but you may think of some

clever uses we have not.

Table 4-6 summarizes bookmark commands.

Table 4-6. Bookmark commands

Keystrokes

Cxrm
Edit — Bookmarks —
Set Bookmark

Cxrb
Edit — Bookmarks —
Jump to Bookmark

(none)
Edit — Bookmarks —
Rename Bookmark

(none)
Edit — Bookmarks —
Delete Bookmark

(none)
Edit — Bookmarks —
Save Bookmarks

Cxrl
Edit — Bookmarks —
Edit Bookmark List

(none)
Edit — Bookmarks —
Insert Contents

(none)
Edit — Bookmarks —
Save Bookmarks As

(none)
Edit — Bookmarks —
Load a Bookmark File

(none)
Edit — Bookmarks —
Insert Location

Command name
bookmark-set

bookmark-jump

bookmark-rename

bookmark-delete

bookmark-save

bookmark-menu-list

bookmark-insert

bookmark-write

bookmark-load

bookmark-insert-location

Action

Set a bookmark at the current cursor position.

Jump to a bookmark.

Rename a bookmark.

Delete a bookmark.

Save all bookmarks in default file.

Move to *Bookmark List* buffer.

Insert full text of file associated with a given bookmark.

Save all bookmarks in a specified file.

Load bookmarks from specified file.

Insert the path to a given bookmark at the cursor position.

112 | Chapter4: Using Buffers, Windows, and Frames

Now that you know how to work with multiple buffers, frames, and windows, why
not read the next chapter to discover some of the things you can do with them?
Some, like using the directory editor and working with the command line from
within Emacs, have been alluded to in this chapter.

Holding Your Place with Bookmarks | 113

CHAPTER 5
Emacs as a Work Environment

Many of the everyday things you do from a command prompt can be done from
within Emacs. You can execute commands, work with directories, and print files—
all without leaving Emacs. Changing tasks is as simple as jumping between buffers.

What’s important about this? Of course, it’s nice to be able to move between tasks
easily. What’s even more important is that you have the same editing environment
no matter what you’re doing: you can use all of the Emacs editing commands to
work on a file, give shell commands, then start up Dired, the directory editor, to do
some file maintenance. It is simple to move text from one window to another. You
can execute a command and then use Emacs commands to cut and paste the results
into a file. If you’re trying to compile a program and keep getting error messages, you
can save the interactive session as a file and confer with someone about the problem.
Despite the many advantages of modern window systems, Emacs often provides the
best way to integrate the many kinds of work you do daily.

Much of the information in this chapter involves integration between Emacs and the
operating system. Emacs is most commonly a Unix editor, so forgive us for a bias in
that direction. But we are happy to report that for users of GNU Emacs on other
platforms, integration with the operating system is still available; you can use shell
mode to run commands and can edit directories with Dired. There’s no reason to
leave Emacs no matter what your platform is.

Executing Commands in Shell Buffers

One of the most important features of Emacs is its ability to run a command shell in
a buffer. Once you have started a shell buffer, you can do all of your normal com-
mand-line work within Emacs. What does this buy you?

* You don’t have to leave Emacs to get a command prompt. If you want to print or
compile a file that you’re editing, you can do it immediately.

* You can use Emacs editing features to write your commands.

114

* You can use Emacs editing features to “back up” through your command list,
copy an old command, modify it, and execute it again.

* You can save your shell buffer, keeping a transcript of your editing session—
which automatically includes the output from every command that you ran.
For debugging or remembering commands you run infrequently, this can be
invaluable.

* You can copy output from commands into a file or into another command.
* You can save complex commands in a file and insert the file at the promprt,
rather than retyping the command.

As you get used to working within Emacs, you will undoubtedly discover more and
more ways to put shell mode to use.

In this section, we discuss shell mode. Later in this chapter, we discuss directory
editing, printing, and calendar and diary features for doing simple time management
in Emacs. Right now, we’ll start with a simple variation on shell mode, a feature that
lets you execute commands one at a time.

Running One Command at a Time

To run a command while you’re in an Emacs session, type M-!. Emacs asks for the
command you want to run. Type the command and press Enter. Emacs then opens a
window called *Shell Command Output* where it displays the results of your command.

Type: M-!

emacs®localhost.localdomain
File Edit Options Buffers Tools Minibuf Help

DExEHE S 8BRS XY

Htately, plump Buck Mulligsn came from the stairhead, bearing a bowl
J of lather on which a mirror and a razor lay crossed. A yellow

dressinggown, wngirdled, was sustained gently behind him by the mild
morning air. He held the bhowl aloft and intoned:

7 —-- Introibo ad altare Dei.
--:--— joyce Top L1 (Text Fill)-—————-————omo oo 4
J¥ Shell commznd:

Emacs prompts you for a command to execute.

Executing Commands in Shell Buffers | 115

Type: diff joyce joyce2

emacs®@localhost.localdomain
File Edit Options Buffers Tools Help

A 725 = oo
DE*HES $0PRE X
[§ Etately, plump Buck Mulligan came from the stairhead, bearing a bowl
of lather on which a mirror and a razor lay crossed. & yellow
J dressinggown, wngirdled, was sustained gently behind him by the mild
morning air. He held the howl aloft and intoned:

--:-— joyce Top L1 (Text Fill)—-——o-—om oo oo 4

=1
J < Stately, plump Buck Mulligan came from the stairhead, bearing a howl

» Stately, swelte Buck Mulligan came from the stairhead, bearing a bowl

-u:** *Shell Cormand Output* A1l L1 (Fundamental - Exit [I])---——————---—--——-—1

JT

Emacs executes the diff command and puts the output into a *Shell Command Output*
buffer.

Because the output from the diff command is in a buffer, you can edit it, save it, or
do anything else you would like with it. Of course, if the operating system has no diff
command or cannot access it for some reason, this command fails.

An interesting twist to the shell command facility is that you can use a region of a
buffer rather than a traditional file as input to the command. For example, let’s say
we want to sort a phone list. First, we put the cursor somewhere in the list (say, on
the first character of Liam), then we give the mark-paragraph command (M-h). This
command defines the phone list as a region, with the cursor at the beginning of the
paragraph and the mark at the end.

In the following example, the shaded area shows the extent of the region we want to
sort. After selecting a region, we press M-| (for shell-command-on-region); Emacs
prompts for the shell command to run.

116 | Chapter5: EmacsasaWork Environment

Type: M-h M-|

i

T emacs@FREAWARU
File Edt ©Options EBuffers Tools Minibuf Help

DEexxE@B s XBBHERE XY

ﬂiam [703)555-2112 -
Alfred (21Z)555-7512
Denise (904)555-0332
Tatzin (514)555-7578

:

——4%** phonelist All L1 (Fundamental) ——————-————-
ZFhell command on region: I ji

Emacs prompts you for a command to execute (Windows).
Now we give the command sort without specifying any input file. Emacs is taking

care of the input for us.

Type: sort Enter

¥ emacsaFREAWARU =13}

File Edit ©Options Buffers Tools Help
D& *xEdBE S EBHQE XD

Liam [703)555-2112 -
Alfred (21Z)555-7512
Denise (904)555-0332

i

Yatzin (814)555-7878 j
——4** phonelist All L1 [Fundatental) -—————————-—
@lfred [212)555-7512 -
Denise (904)555-0332
Lizm [703)555-211z
Yatzin (814)555-7878

-1%** *Shell Command Output* All L1 [Fundammental) -

Emacs runs a sort on the region (Windows).

Emacs has sorted the phone list (i.e., everything within the region).

Executing Commands in Shell Buffers | 117

A useful variation for M-! puts the output directly into the current buffer, rather than
into a *Shell Command Output* buffer. To do so, precede the command with C-u: for
example, C-u M-! runs a shell command and puts the output in the current buffer.

Type: C-u M-!Is -la Enter

806 Emacs@Debra-Camerons-Computer.local

DeEex BB ¥ EHRE XY

Deh, m

Your home directory hos gotten completely out of control. Toke o look ot this:

Botal 10616

-rW-r--r-- 1 deb S%FF 7 5 Jul 88:59 #buffer#

-rW-r--r-- 1 deb stoff 633 12 Jul 13:15 #chickens#

-rW-r--r-- 1 deb staff 200 13 Dec 2083 #deb. tex#

-rW-r--r-- 1 deb stoff 718 29 Jun 04:48 #dickens.himl#

-PW-r--r-- 1 deb stoff 313 29 Jun 85:25 #dotemocspierregastonflyspell# o

-rW-r--r-- 1 deb stoff 38011 1@ Mar @5:43 #enums.zml# £

-PW-r--p-- 1 deb stoff 2 12 Feb 2003 #frontick b
--:---Emocs sysodm Top L5 (Text Fill)------------------c-coocmmcmoo-

Emacs runs Is and inserts the result at your current location (Mac OS X).

Using Shell Mode

Now we’re ready to discuss shell mode, the interactive facility for running com-
mands. To start a shell buffer, type M-x shell Enter. This creates a buffer named
shell. You see the prompt for your shell within this buffer. (This defaults to your
usual shell; you can substitute another shell to use in Emacs. See “Which shell?” later
in this chapter.)

For the most part, shell mode is exactly like the normal command interface, except
that you can use Emacs to edit the commands as you type them. You can copy com-
mands from one place to another, copy the results into a file, save the whole shell
buffer to a file, and so on. Note in Figure 5-1 that Emacs has added a few items to
the menu bar (Complete, In/Out, and Signals).

A few tricks are worth knowing, though. For example, you normally interrupt a
command by typing C-c. If you type C-c in shell mode, Emacs thinks that the C-c
is part of a command meant for it, because many Emacs commands start with C-c.
Therefore, you have to type C-c C-c to terminate the current job. Likewise, under
Unix, you type C-c C-z to stop a job, instead of C-z, and C-c C-d instead of C-d,

118 | Chapter5: EmacsasaWork Environment

emacs® localhost.localdomain
File Edit Options Buffers Tools Complete In/Out Signals Help

DE xBRE XD

el |
¥
—uitt kghell* a1l L1 {Shell:run)—————————— 3
I
ene Emacs@Debra-Camerons-Computer.local

O x RS XE

Debra-Camerons-Computer’ | A
--:**_Emacs *shell* ALl L1 (ShellePun)--c-mmcmcccmmmcceo oo
4

= emacs @FREAWARU =]

File Edit Options Buffers Tools Complete InfOut Signals Help

OB x K

Microsoft Windows EP [Version 5.1.2600] -

[C) Copyright 1955-2001 Microsoft Corp.

c:\.>l

—14 %% *kghell# All L4 (Shell:run) ———-—

Figure 5-1. Shell buffers for Linux, Mac OS X, and Windows

and so on. (C-c C-d is not strictly necessary because Emacs understands C-d in
context. If you're at the end of the buffer, C-d means “end of file”; if you’re any-
where else, it deletes a character.) Alternatively, you can select options from the
Signals menu rather than using control characters, if desired (for example, select-

ing EOF instead of typing C-d).

Shell mode also provides a few convenient shortcuts. The command M-p retrieves
the last shell command you typed, no matter how far back in the buffer it is. Typing

successive M-p’s brings back earlier commands.

Executing Commands in Shell Buffers

119

Type: M-p

eoe Emacs@Debra-Camerons-Computer.local

OE x S

Let us think of them this year ot the Christmos fire, ond not forget —~
them when it is burnt out.

‘\end{document} 3

% End of The Project Gutenberg Etext of Some Christmos Stories by Dickens m
x s
Debro-Camerons-Computer® more dickensxmas. tex]] Y
--:**_FEmocs *shell* Bot L2372 (Shell:run)---------------------~--~----
History item: 1 Y

M-p retrieves the last command, even if it isn’t on the screen (Mac OS X).

In this example, the previous command was more dickensxmas.tex. It’s no longer
on the screen; its output has pushed it off the top. M-p (for comint-previous-input)
retrieves the command, but doesn’t execute it; you can edit the command before
pressing Enter. To find subsequent commands, type M-n.

If these commands sound familiar to you, they should. They are history commands,
which are identical to the minibuffer history commands we discussed in Chapter 3.
The In/Out menu is devoted to working with command history.

Enter and Tab have special functions in shell mode. Pressing Enter executes the
command on the line where the cursor is, even if you move the cursor up to the line
of an earlier command you want to execute again. When you press Enter, Emacs
copies the command to the end of the buffer and executes it. Of course, you can
modify the command before pressing Enter.

Pressing Tab puts the Emacs completion feature into action; use completion for
operating system commands, filenames, and variables. Note that the completion of
system commands works best on Unix implementations like Linux and Mac OS X;
Emacs doesn’t seem to find all the possible Windows commands, for example.

If you type a command that produces a lot of output, cluttering up your session,
there’s an easy way to get rid of it. Type C-c C-o (for comint-kill-output).

120 | Chapter5: EmacsasaWork Environment

Type: C-c C-0

eoe Emacs@Debra-Camerons-Computer.local
O e x S
-PW-P--r-- 1 deb stoff 818 4 Aug 11:09 work —~
Debro-Comerons-Computer® 1s -la
¥ putput flushed *** k
Debro-Comerons-Computer] m
FY
v
--t**_Emacs *shell* Bot L2624 (Shell:rum)-------------------—--~-—---
Z

C-c C-0 automatically deletes the output from the last command (Mac OS X).

The previous command (Is-la) remains on the screen, but its output, a long list of files, is
deleted. C-c C-o can delete output from only the most recent command; it can’t delete
output from your previous commands.

Another useful command for shell mode is C-c C-r (for comint-show-output). This
command is useful if a command produces a lot of output and causes the first few lines
of output to scroll off the screen. C-¢ C-r repositions the window so the first line of out-
put from your last command is at the top of the window. If you want to see the end of
the output instead, type C-c C-e (for comint-show-maximum-output); this command
moves the last line of the input to the bottom of the window.

When you’re writing a book, moving by paragraphs makes sense, but when you’re
using a shell, moving by output group is more helpful. An output group consists of a
command and its output. To move to the previous output group, type C-c C-p. To
move to the next output group, type C-c C-n.

An advantage of shell mode is that you can start a command and then edit another
buffer while the command runs. The shell buffer doesn’t need to be onscreen; just type
M-x shell to get the buffer back again.

You can have multiple shell buffers running at once; just use the command M-x
rename-uniquely to rename your shell buffer. You can start another shell buffer, and
another, and another—as many as you need to juggle all your tasks.

Which shell?

Normally, Emacs uses your default shell in shell mode. Under Windows that’s cmd.exe
(the familiar C:\> prompt or a close relative).” But Unix has a wide variety of available

* You do have choices under Windows as well, thanks to Cygwin (http://cygwin.com/). For example, if you
wanted to run Cygwin’s bash, you’ll find helpful information on how to set that up on Ngai Kim Hoong’s
page on that topic at hitp://www.khngai.com/emacs/cygwin.php.

Executing Commands in Shell Buffers | 121

shells, including the GNU Project’s bash and the zed shell, zsh. Whatever shell you nor-
mally use, that’s what Emacs starts when you enter shell mode.

How does Emacs know which shell to start? First, it looks at the variable shell-file-
name. Then it looks for a Unix environment variable named ESHELL. Finally it
looks for an environment variable named SHELL. If you want to run another partic-
ular shell (for example, the zed shell) when you’re in Emacs, you can add the follow-
ing command to your .emacs file:

(setq shell-file-name "/bin/zsh")

When Emacs starts an interactive shell, it runs an additional initialization file after
your shell’s normal startup files. The name of this file is .emacs_shell-name, where
shell-name is the name of the shell you want to use in Emacs. It must be located in
your home directory. For example, if you use the C shell, you can add Emacs-only
startup commands by placing them in the file .emacs_csh. Let’s say that when
you’re in Emacs, you want to change the prompt to emacs:% and you want an envi-
ronment variable called WITHIN_EDITOR to be set to T. Here’s the contents of
your .emacs_csh file:

set prompt="emacs:% "

setenv WITHIN_EDITOR T
Within a shell buffer, Emacs also sets the environment variable EMACS to t, and sets
your terminal type (the TERM variable) to emacs.

Making passwords invisible in shell mode

By default, shell mode displays everything you type and that includes passwords—
not a good situation if someone is peering over your shoulder. There is a way around
this problem, however. Before you type the password, type M-x send-invisible.
Emacs asks for the nonechoed text. When you type a character, Emacs puts an aster-
isk in the minibuffer. Press Enter and Emacs enters the password without displaying
it. To have Emacs hide passwords as you type them, add the following two lines to
your .emacs file:
(add-hook 'comint-output-filter-functions
"comint-watch-for-password-prompt)

Emacs asks for nonechoed text in the minibuffer whenever a password prompt
appears on the screen, making sure that the password is never displayed. Table 5-1
summarizes shell mode commands.

Table 5-1. Shell mode commands

Keystrokes Command name Action

(none) shell Enter shell mode.

C-cCc comint-interrupt-subjob Interrupt current job; equivalent to C-c.
Signals — BREAK

122 | Chapter5: Emacsasa Work Environment

Table 5-1. Shell mode commands (continued)

Keystrokes Command name Action

Cd comint-delchar-or-maybe-eof ~ Send EOF character if at end of buffer; delete a
character elsewhere.

CcCd comint-send-eof Send EOF character.

Signals — EOF

CcCu comint-kill-input Erase current line; equivalent to C-u in Unix shells.

CcCz comint-stop-subjob Suspend or stop a job; C-z in Unix shells.

Signals — STOP

M-p comint-previous-input Retrieve previous commands (can be repeated to

In/Out — Previous Input find earlier commands).

M-n comint-next-input Retrieve subsequent commands (can be repeated

In/Out — Next Input to find more recent commands).

Enter comint-send-input Send input on current line.

Tab comint-dynamic-complete Complete current command, filename, or variable
name.

CcCo comint-kill-output Delete output from last command.

In/Out — Delete Current

QOutput Group

CcCr comint-show-output Move first line of output to top of window.

CcCe comint-show-maximum-out- Move last line of output to bottom of window.

In/Out — Show put

Maximum Output

CcCp comint-previous-prompt Move to previous command.

In/Out — Backward

Output Group

CcCn comint-next-prompt Move to next command.

In/Out — Forward Output Group

Using Dired, the Directory Editor

Dired is one of the most interesting features of Emacs. With Dired, you can look at a
listing of all the files in a directory, delete them, rename them, copy them, and per-
form almost all basic file operations. More important, Dired can make you more pro-
ductive. For example, you can work with groups of files, deleting, moving,
compressing, or even query-replacing strings in them.

There are several ways to start directory editing. If you’re not in Emacs, invoke
Emacs with a directory name as an argument, for example:

% emacs literature

Emacs starts up editing the directory literature: you’ll see a single window that con-
tains a listing of the literature directory. You can also start the directory editor by
using C-x C-f (or any other command for visiting a file) and naming a directory,

Using Dired, the Directory Editor | 123

rather than a file. For example, typing C-x C-f literature gets you ready to edit the lit-
erature directory. Typing C-x d (for dired) or selecting the folder icon on the toolbar
also starts Dired; you then specify a directory name. Finally, dragging a folder onto
the Emacs window also starts Dired.”

No matter how you start the editor, the result is the same.

Type: C-x C-fliterature Enter

emacs@ localhost.localdomain

File Edit Options Buffers Tools Operate Mark Regexp Immediate Subdir Help

DE x Q&8 XT

Jhome /deb/literature:
total used in directory 36 awailable 10080472
drwer —wr - 2 deb deh 4096 Zug 14 14:03 .
drws-——--- 45 deb deh 8192 aug 15 08:02 ..
-[W-r--r-- 1 deb deb 136 Jul 12 14:09 Flake
—[W-r--r-- 1 deh deh 628 Tul & 11:06 dickens
—[W-L--L[-— 1 deb deh 404 Aug 14 14:03 james
—[W-L--[-- 1 deb deh 425 Bug 4 10:41 jamese

i -LW-r--r-- 1 deb deh 405 Jul 12 14:37 joyce

-u:%* literature All LE (Dired by name)-—-————-—----——---———-——— 4

X M |

A basic directory editor display.

As you can see, Dired’s display is similar to what you see if you type ls -1 at a Unix
shell prompt. The permissions associated with the file, the owner, the group name,
the size of the file, and the date last modified all precede the filename. All files and
directories are listed, including those whose names start with a dot. The cursor starts
out on a filename, rather than in the first column.

Also, if your display supports colors (unfortunately this book doesn’t), you’ll see that
directories are blue, backup and auto-save files are tan, and symbolic links are pur-
ple. Colors are a function of font-lock mode. If you don’t see colors in your directory
listing, type M-x font-lock-mode Enter or add the following line to your .emacs file:

(global-font-lock-mode t)

By default, the list is sorted by filename, but you can sort it by date instead. Look at
the mode line. It says (Dired by name). To change the order of the display, type s (for
dired-sort-toggle-or-edit). This command puts the newest files at the top of the list,
solving the “Where’s that file I worked on yesterday?” problem quite easily. The
mode line says (Dired by date). Typing s again toggles the sort, putting it back in
alphabetical order.

* The one exception to this is running Emacs in the Mac OS X Terminal application, which has its own drag-
and-drop behavior. In the terminal-—and thus in Emacs running in the terminal window—dragging and
dropping a folder inserts the complete pathname of that folder rather than opening the folder in Dired.

124 | Chapter5: Emacsasa Work Environment

If you remember the commands used to edit the buffer list (from Chapter 4), you will
find that they are almost identical to the directory editor commands. You can do
many additional things, but the basic commands are the same.

Remember, in the directory editor you are working directly with
files, not with buffers. When you delete a file using Dired, it’s gone
permanently.

There are several ways to move around in Dired. The commands Space, C-n, and n all
move you to the next file in the list. Del, C-p, and p all move you to the previous file.
Arrow keys and PgUp and PgDown work as well. You can also use any of the search
commands (incremental search, word search, and so on) to find a particular file.

Viewing and Editing Files

When you look at a directory listing, you may want to get a quick look at the files.
Dired’s v command does just this: put the cursor on the file you want to view and
press v (for dired-view-file). Emacs displays the file in view mode.” This is a read-
only mode, so you can’t modify the file. Press C-c or q to return to the directory list-
ing. While you’re viewing the file, you can use s to start an incremental search, or
press Enter to scroll the display down one line. Typing = tells you what line the cur-
sor is on. There are a number of shortcuts for other Emacs commands (like marking
text), but frankly, the regular commands work correctly. There’s no reason to
remember a special set of commands when the ones you already know work.

If you want to edit a file from the Dired buffer, move to the line the file is on and
press Enter (a variety of other keystrokes work as well, such as f for find or e for
edit). Emacs finds the file and you can edit it. This is a completely normal editing
buffer: you can make any changes you want, save them, visit other files, and so on.
Typing C-x b followed by the name of the directory you were working in moves you
back to the Dired buffer. Or you can use the buffer menu (C-x C-b) to find and dis-
play the Dired buffer.

Viewing and editing files is nice, but you already know how to do that—right?
You’re waiting for the interesting stuff: how to delete files.

* What if it’s a file that shouldn’t be viewed in Emacs, like a JPG or a PDF? In this case, the variable dired-
view-command-alist associates viewers with file extensions. The defaults for this command work on Linux,
but require some tweaking on other platforms. See Chapter 10 for an example of using Custom to change
this variable for Mac OS X and Windows.

Using Dired, the Directory Editor | 125

Deleting, Copying, and Renaming Files

As we’ve said, file deletion is almost identical to buffer deletion with the buffer list. If
you learned how to delete buffers, you know the basics of deleting files with Dired.
First, you flag a file for deletion by moving to the file’s name and typing d. Doing this
places a D on the left margin and moves the cursor to the next file in the list. You can
flag as many files as you want. You can change your mind at this point and type u to
undelete the file. At some later time, you type x to delete the files (more on this in a
minute). The following screen shows what the Dired buffer looks like when you flag
a few files for deletion.

Type:ddd

¥ emacs 2FREAWARU (=[]

File Edit ©Options Buffers Tools Operate Mark Regexp Immediate Subdir Help

DExBRE XY

dr-xr-xr-x 1 Owner root 0 06-058 17:45 Lpplication Data d
I -ry-rw-ruw- 1 Cmwner root 53901 zZ000-03-23 Buycom.mbx o
I —ry-rw-rw- 1 Owner root 3592 2000-03-23 Buycom. toc
I —-ry-rw-rw-— 1 Owner root Z2776 Z001-06-30 ChAnet2.toc

—ruW-ru-ri- 1 Owner root 54522 Z001-06-26 CTR.TOC

ArwNr wEEwx 1 Owner root 0 07-15 12:24 Cookies

—CW-EW-Eu— 1 Owner root 3700 1998-0z-22 DelsLl.isu j
-1%%%* [wner 6% L13 [(Dired by na.me]————————————————————;

Three files flagged for deletion (Windows).

As we mentioned, you can type u at any time to remove the deletion flags from the
files. Typing u moves you to the next file in the list, and, if it is marked, unmarks it.
You can also use Del to unmark. This command undeletes the previous file in the list
and then moves up one line.

Because Emacs generates backup files and, at times, auto-save files, you may want to
delete them from time to time. Emacs offers shortcut commands to flag such files.
Typing # flags all the auto-save files (files whose names start and end with #) for dele-
tion. Emacs flags them with D. Typing ~ flags all the backup files (whose names end
with ~) for deletion. You can remove the flags from backup files you want to keep,
for example, the backup copies of files you’ve recently worked on.

When you really want files to be deleted from disk, press x. Emacs displays the
names of all the files flagged for deletion and asks you if you want to delete them.

126 | Chapter5: EmacsasaWork Environment

Type: x

¥ emacs @FREAWARU (=]

File Edit Options Buffers Tools Minbuf Help

DExEEBAYETDHRE XY

I -rw-rw-ri- 1 Owner root ZE776 Z2001-06-30 CaAnet?. toc ﬂ
—EW-EW-Eu- 1 Owner root 545822 Z001-06-26 @TR.TOC
ArwNr wEEwx 1 Owner root 0 07-15 12:24 Cookies LI
-14%% Owmer 8% L13 (Dired by hame) ——————————————————————
Buycom.mbx EBuycom.toc Clnetz., t.DC:l:l ﬂ
[
—1h** *Deletions* A11 L1 T T T i
Delete D [3 f£iles] (yes or no) ﬁ

Emacs asks you to confirm the deletion by typing yes (Windows).

Type yes to delete them all or type no to return to the Dired buffer without deleting
any of them.

This is the usual way of deleting files, but if you want a file deleted right away, type
an uppercase D. Emacs asks if you want to delete the file (yes or no). Type yes to
delete the file immediately or no to change your mind. In Dired, this is one of a num-
ber of cases in which the lowercase letter (like d to flag for deletion) and the upper-
case letter (like D to delete immediately) have a different meaning.

To copy a file in Dired, type C next to it (it must be a capital C). Emacs asks for the
name of the file you want to copy to. Type the name and press Enter. Emacs says,
Copied: 1 file. To copy several files in the list, preface the C with a number. For
example, typing 3C would copy this file and the next two files. (See “Working with
Groups of Files” later in this chapter for fancier ways to select a group of files to
operate on.)

To rename a file with Dired (similar to the Unix mv command), type R next to the
filename. Emacs asks what the new name should be. Type it and press Enter. Emacs
says, Moved: 1 file.

If you move files between platforms, you can wind up with some filenames in upper-
case and some in lowercase. Files moving from older versions of Windows may be in
all caps, for example. Simply mark the files in question by typing m, then press %l
for lowercase or %u for uppercase. Voila—painless case consistency.

Compressing and Uncompressing Files

Compressing files saves disk space, and Dired provides an easy way to do it. Put the cur-
sor on the line of the file you want to compress and press Z (for dired-do-compress).
Emacs asks the following:

Compress or uncompress filename? (y or n)

Using Dired, the Directory Editor | 127

Emacs compresses the file if it’s not compressed and uncompresses it if it is.” Press y
to compress or uncompress the current file. Compression happens immediately, so
you can watch both the extension and file size change as Emacs compresses the file.

What about editing compressed files? Although it’s not on by default, Emacs has
an automatic compression/decompression mode called auto-compress mode. To
enter it for this session, type M-x auto-compress-mode Enter, which turns auto-
matic compression on. To enable auto-compression automatically, add this line to
your .emacs file:

(auto-compression-mode 1)

Comparing Files

In Chapter 4, we discussed comparing files in two windows. Emacs provides a way
to do this using the diff command in Dired. Set the mark on the file you want diff to
compare, put the cursor on the other file, then type =. Emacs compares the two files
and opens a window with a *diff* buffer containing the output from the command.

Emacs has a separate option for comparing a file to its backup file. Put the cursor on
the file you want to compare with its backup and type M-=. Emacs displays a *diff*
buffer showing the differences between the two files.

If you are serious about version control, you may want to check out Chapter 12,
which discusses version control as well as the GNU tool ediff.

Running Shell Commands on Files

While Dired’s implementation of diff is useful (and there are implementations of
chmod, grep, and find as well), in a more general sense, you can perform any com-
mand on a file by pressing an exclamation point (!). For example, let’s alphabetize
the phone list file using the sort command.

* Emacs understands only compress and gzip formats, not ZIP or other proprietary file compression algo-
rithms. When you uncompress files, Emacs recognizes and correctly uncompresses files with the following
suffixes: .z, .Z, or .gz. When you compress files, Emacs uses gzip, resulting in files that end in .gz.

128 | Chapter5: EmacsasaWork Environment

Move to the phone file and press !

eoe Emacs@Debra-Camerons-Computer.local
e iy - o
DExEHEA S $¥EHRE XY
-rW-r--r-- 1 deb staff 48 14 Aug 1@:39 poros~ -~
-PW-r--r-- 1 deb staff 146 26 Jul B5:3@ phaone
-PW-r--r-- 1 deb staff 146 26 Jul ®5:29 phone~
-PW-r--r-- 1 deb staff 20149 19 Mar @8:04 psgmlinfo.txt
-PW-r--r-- 1 deb staff 474 5 Feb 2003 reolemacs
-PW-r--r-- 1 deb staff B60B 26 Jun @5:08 refillemocs
-PW-r--r-- 1 deb staff B@3 26 Jun B5:@3 refillemocs~
-rW-r--r-- 1 deb staff 238 29 Sep 20083 repeotedindenttotionof @
@ somelevel
-rW-r--r-- 1 deb staff 143 29 Sep 2003 ruler m
-rW-r--r-- 1 deb skaoff 695180 1 Dec 2083 sensellt.tex -
-rW-r--r-- 1 deb staff 695179 1 Jul 2002 =ensellt.tex- 4
-rW-r--r-- 1 deb staff 6417 17 Nov 2003 sgmlmodebindings v
--:%*-Emacs ~ 80% L211 (Dired by nome)-----------------
| on phone: I P
Emacs asks what command you want to run (Mac OS X).
Type: sort
06 Emacsi@Debra-Camerons-Computer.local
O x XK
-rW-r--r-- 1 deb stoff 416 14 Oct 2003 osheo —~
-PW-F--r-- 1 deb stoff 38 14 Aug 18:4@ paros
-rW-r--r-- 1 deb staff 48 14 Aug 18:39 poros- m
-PW-r--r-- 1 deb stoff 146 .26 Jul B5:3@ |[ghone =
-PW-F--F-- 1 deb stoff 146 %6 Jul @5:29 phone~ 4+
-rW-r- - - 1 deb stoff 20149 10 Mar 88:84 psgmlinfo.txt b
--:%*-Emocs ~ 85% L213 (Dired by nome)-------------—~-—-————--

" Plisonio 793-465-0288
Andrew 212-570-2182
Bill 212-424-8264
Chantal 212-218-6325
Fortesque 212-469-5985
Georgiana 212-340-9858

--:**_FEmacs *Shell Commond Output*

Top L1

(Fundoment@l)-----------------4

Emacs displays the output from the command in a separate window (Mac OS X).

Using Dired, the Directory Editor |

129

Usually, asterisks (*) and question marks are used as wildcards in commands. In
Dired, they have a special meaning. An asterisk means “use the file 'm on or the
files I've marked”; that way you don’t have to type filenames explicitly. When mul-
tiple files are marked, a question mark means to run this command separately on
each file.

In a slightly more complex example, you might have a command with more than one
file as an argument. For example, you might want to make a new file out of the
sorted phone list.

Move the cursor to the phone file, then type: !

8eoe Emacs@Debra-Camerons-Computer.local
) 5 o
DR xHBRA XOBRE XD
-rW-r--r-- 1 deb staff 48 14 Aug 10:39 poros- —
-rW-r--r-- 1 deb staff 146 26 Jul ©5:3@ ghone
-rW-r--r-- 1 deb staff 146 26 Jul ©5:29 phone~
-rW-r--r-- 1 deb staff 20149 16 Mar ©8:04 psgmlinfo.txt
-rW-r--r-- 1 deb staff 474 5 Feb 2003 realemacs
-rW-r--r-- 1 deb staff 608 26 Jun ©85:08 refillemacs
-rW-r--r-- 1 deb staff 603 26 Jun ©5:03 refillemocs—
-rW-r--r-- 1 deb staff 230 29 Sep 20803 repeotedindenttotionof @
Ssomelevel
-rW-r--r-- 1 deb staff 143 29 Sep 2083 ruler m
-rW-r--r-- 1 deb staff 695180 1 Dec 2083 sensellt.tex -
-rW-r--r-- 1 deb staff 695179 1 Jul 2002 =enzellt. tex- 4
-PW-r--r-- 1 deb staff 6417 17 Nov 2003 sgmlmodebindings v
--:%*-Emocs -~ 85% L211 (Dired by nome)-----------------
| on phone: I P

Emacs asks what command you want to run (Mac OS X).

Now tell Emacs you want to sort your phone file and put the output in a new file
called phonesorted. The cursor is on the phone file, so you don’t need to type its
name in the command. Substitute an asterisk (*) for the name of the file:

130 | Chapter5: EmacsasaWork Environment

Type: sort * > phonesorted

eoe Emacs@Debra-Camerons-Computer.local

D= x s
-rW-r--r-- 1 deb staff 48 14 Aug 1@:39 poros~ —
-rW-r--r-- 1 deb staff 146 26 Jul @5:3@ &nne
-rW-r--r-- 1 deb staff 146 26 Jul @3:29 Mone-~
-PW-r--r-- 1 deb staff 20149 19 Mar ©@8:04 psgmlinfo.txt
-rW-r--r-- 1 deb staff 474 5 Feb 2003 reolemocs
-rW-r--r-- 1 deb staoff 608 26 Jun B5:08 refillemacs
-rW-r--r-- 1 deb staff 6@3 26 Jun B5:03 refillemocs~
-rW-r--r-- 1 deb staff 238 29 Sep 2083 repeotedindenttotionof @

@ somelevel
-rW-r--r-- 1 deb staff 143 29 Sep 2003 ruler m
-rW-r--r-- 1 deb stoff 695180 1 Dec 20803 sensellt.tex -
-rW-r--r-- 1 deb staff 693179 1 Jul 2002 sensellt. tex~ &
-rW-r--r-- 1 deb staff 6417 17 Nov 2003 sgmlmodebindings v

--:%*-Emacs ~ 80% L211 (Dired by nome)-----------------

(Shell command succeeded with no output) y

The operating system sorts the phone file and puts the output into the new file
phonesorted (Mac OS X).

We created the file, but it doesn’t appear on the display, which is not automatically
updated in this case. To see the phonesorted file, type g.

Type: g

eoe Emacs@Debra-Camerons-Computer.local

D& x o5
-PW-r--r-- 1 deb staff 419 4 Jul @5:23 odyssey~ —~
-rW-r--r-- 1 deb staff 699 28 Jun ©5:34 olddotemacs
-rW-r--r-- 1 deb staff 356 4 Feb 2083 oldemocs
-rW-r--r-- 1 deb staff 416 14 Oct 2003 oshea
-PW-r--r-- 1 deb staff 50 14 Aug 1@:40 paoraos
-rW-r--r-- 1 deb staff 4@ 14 Aug 18:39 poros-
-rW-r--r-- 1 deb stoff 146 26 Jul @5:3@ [ghone
-PW-r--r-- 1 deb staff 146 15 Aug @7:41 phonesorted
-PW-r--r-- 1 deb staff 146 26 Jul ©5:29 phone~ m
-rW-r--r-- 1 deb staff 20149 10 Mar ©8:04 psgmlinfo.txt
-rW-r--r-- 1 deb staff 474 5 Feb 2003 reolemacs -
-PW-1--r-- 1 deb stoff 6@R 26 Jun @5:@8 refillemacs |4
-PW-r--r-- 1 d& staff B@3 26 Jun @5:@3 refillemocs— v

--:%%-Emacs ~ 83% L213 (Dired by mome)----------——-----—-—-

P

Emacs updates the Dired display, showing the file phonesorted (Mac OS X).

Dired is frankly inconsistent about whether you type g before the display is updated.
Some commands, as we’ll see shortly, update the display immediately. Others, such
as running shell commands on files, do not (Emacs really doesn’t know what shell

Using Dired, the Directory Editor | 131

commands it’s running or their effect on the display). A good rule of thumb is to type
g if you don’t see what you expect to see.

Working with Groups of Files

So far we’ve talked about working with one file at a time; any commands you give
apply to the file the cursor is on. Working with multiple files is a better illustration of
the real power of Dired. You can organize your directories in a flash once you learn a
few shortcuts. First let’s talk about some ways to select files, and then we’ll talk
about what we can do with the selected files.

Selecting files

So far we’ve primarily talked about flagging files for deletion. When you want to do
something else with a group of files, you first mark them with an asterisk. Pressing m
marks the file the cursor is on; an asterisk appears where you normally see a D. Typing
3m marks this file and the next two files. Once you mark files with an asterisk, Emacs
assumes that any command you issue is meant for these files. So if you have three files
marked with an asterisk and press Z to compress, Emacs assumes you want to com-
press those three files. After the compression, the files remain marked with asterisks.
So how do you get rid of the asterisks when you’re done with these files?

To remove the asterisks, you press M-Del (for dired-unmark-all-files). Emacs asks
which marks to remove. Press Enter, and Emacs removes all the marks.

Sometimes it’s easier to mark the files you don’t want to work with than those you
do. Pressing t toggles the marks, marking all unmarked files and removing marks
from those previously marked.

Selecting likely candidates for deletion

Marking files sequentially is simple but, in all honesty, it’s not very powerful.
Emacs provides commands for selecting types of files that you often want to get rid
of when you’re cleaning up a directory: backup files, auto-save files, and so-called
garbage files.

Auto-save files are created when a session terminates abnormally; they have the for-
mat #filenamett. Backup files which Emacs creates periodically, have the format
filename™. To mark these files in Dired, type # or ~ respectively.

132 | Chapter5: EmacsasaWork Environment

Emacs also has an option that automatically selects “garbage” files. By default, this
includes files with the following extensions: .log, .toc, .dvi, .bak, .orig, and .rej. Gar-
bage files are defined by a regular expression, which is contained in the variable
dired-garbage-files-regexp; you can change the value of this variable to define gar-
bage files as you see fit (after all, one man’s junk is another man’s treasure).

Selecting files by type

Dired provides commands for selecting executable files, directories, and symbolic
links. To select executable files, type * *. To select directories, type * /. Typing * @
marks symbolic links.

Using regular expressions to choose files

Often you want to select related files and either archive them, move them, compress
them, or just delete them. Typically, you use wildcards to select multiple files. In
Dired, you use regular expressions. To mark a group of files whose filenames match
a regular expression, press % followed by m to mark them with an asterisk.

For example, let’s mark all the files that start with ch. Remembering the quick lesson
on regular expressions from Chapter 3, # finds the beginning of a word, so the regu-
lar expression Ach would mark all the files that start with ch.

Type: %m
¥ emacs 2FREAWARU e

File Edit ©Options Buffers Tools Minibuf Help

DExEEB Y ¥BERE XY

—rW—EW-FT— 1 Cwner root 164864 2001-01-17 budgetforrob.?‘:J
Exls

—EW-EW-ET— 1 Jwner root 67584 2002-02-26 chOOo

—EW-EW-ET— 1 Cwner root 173568 2002-02-25 Bth

—EW-EW—ET— 1 Jwner root 232448 2001-12-19 chO2 1

—EW-EW-ET— 1 Jwner root 153600 Z2002-02-27 chO3

—EW—EW—ET— 1 Jwner root 232960 2002-02-27 chO4 ;ﬂ
-14%* My Doouments 54% L4132 [Dired by nsme)

Mark files (regexp): j

Emacs asks for a regular expression so that it can mark the files (Windows).

Using Dired, the Directory Editor | 133

Type: ~ch Enter

¥ emacs @ FREAWARU [-_"E]kf

File Edit Options Buffers Tools Operate Mark Regexp Immediate Subdie Help

DExBHRQE XE

—FY-ET—ET— 1 Owher root 14336 2001-07-28 augll.xls ;ﬂ
—FY-ET—ET— 1 Owher root 1648364 2001-01-17 budgetforrokb.e
Exl=
T o—rW-ru-ru- 1 Owner root 67584 2002-02-26 chOD
T o—rW-ru-ru- 1 Owner root 173568 2002-02-25 chil
T o—rW-ru-ru- 1 Owner root 232448 2001-12-19 chO2 =
—FW-Fu-ri— 1 Owner root 153600 2002-02-27 chi3 ;I
-1%%*%* My Documents 87% L414 [(Dired by name)
11 watching files marked. j

Emacs marks all the files starting with ch and tells you how many it marked.

Sometimes it’s more useful to mark files whose contents match a given regular expres-
sion. To mark files that contain a certain regular expression, type % g, followed by the
regular expression to match (think g for grep if you’re familiar with grep).

Now that we’ve got the files marked, let’s talk about what to do with them.

Operating on groups of files

In the course of daily work, a directory can get cluttered with many different kinds of
files. Eventually, you need to make subdirectories to organize the files by project, then
move the files to those subdirectories. You can do both these things from within Dired.

Let’s say that the ch files are chapters from a novel you work on in your spare time.
We need a subdirectory called novel to store the files in. You can create a directory
by typing + (for dired-create-directory).

Type: +

¥ emacs@FREAWARU | =%
File Edit Options Buffers Tools Minibuf Help

DExEFEB Y BRAEXY

—EW—EW—ET— 1 Owner root 14336 2001-07-28 augll.=xls ;ﬂ
—EW—EW—ET— 1 Owner root 164564 2001-01-17 budgetforrok.#
Exls
T -IW-LW-Eu- 1 Qwner root 67584 Z2002-02-2¢6 choOD
T -rW-EW-Eu-— 1 Qwner root 173568 2002-02-25 chil
i L S R 1 Qwner root 232448 2001-12-19 chi2 ==
E —EW-EW-LT— 1 Qwner root 153600 2002-02-27 chO3 ;ﬂ
-1%%* My Documents 7% L4414 (Dired by name)
Create directory: c:/Dell/Caweron/G disk/Hy Documentsfl :j

Emacs asks for a directory name (Windows).

134 | Chapter5: EmacsasaWork Environment

Type: novel Enter

T emacs@FREAWARUI

=kl

File Edit Options Buffers Tools Operate Mark Regexp Immediate Subdie Help
OB xBRS X
—FY-ET—ET— 1 Owher root 14336 2001-07-28 augll.xls ;ﬂ
—FY-ET—-ET— 1 Owher root 1648364 2001-01-17 budgetforrokb.e
a1l
druxruxrmy 1 Owner root 0 07-26 06:39 nowvel
T o—rW-ru-ru- 1 Owner root 67584 2002-02-26 chOD
T o—rW-ru-ru- 1 Owner root 173568 2002-02-25 chil =
T o—rW-ru-ru- 1 Owner root 232448 2001-12-19 chO2 ;I
-1%%*%* My Documents 87% L411 [(Dired by name)
=i

Emacs creates the directory and displays it on the screen (Windows).

Now let’s move the ch files we marked into the new directory. We’ll use the rename
command, R. This command, like the Unix mv command, is used for renaming files
and for moving them. Because we have marked more than one file with an asterisk,

when we type R, Emacs assumes we mean t

Type: R

o move the marked files.

T emacs @ FREAWARU

oy

File Edit ©Options Buffers Tools Minibuf

b XEB

Help

@& XY

—EW—EW—ET— 1 Jwner root
Wxls
druxruxrx 1 Jwner root
-1%%* My Doouments 87% L411
ChO5 notes.doc chOz2 chi5
chi0 chi3 chig
cho1 ch04 cho7(]
—14 %% *Marked Files+* 411 L3 [

164864 2001-01-17 budgetforrob. @

)b

0 07-26 06:39 Howel

[Dired by nswme)

Mowe * [11 files] to: c:/Dell/Cameron,

ch0g i’
chiSa
[
Fundszental)
/G disk/Ny Documentsfl jj

Emacs asks where you want to move the marked files to (Windows).

Using Dired, the Directory Editor

135

Type: novel Enter

-

¥ emacs 2FREAWARU =Jo&d

File Edit Options Buffers Tools Operate Mark Regexp Immediate Subdie Help
D& x K
—FY-ET—ET— 1 Owher root 14336 2001-07-28 augll.xls :I
—FY-ET—ET— 1 Owher root 1648364 2001-01-17 budgetforrob.e@
Exl=
druxruxrms 1 Owner root 0 07-26 06:39 Eovel
—FY-ET—ET— 1 Owher root 16384 2001-08-01 convergencefie
Eg.xls
—FW-F - 1— 1 Owner root 14336 2000-07-20 checkhook.xls ;I
-1%%*%* My Documents 89% L410 [(Dired by name)
Mowve: 11 files j

Emacs moves the files (Windows).

Now you can see that the files have moved. Marking files by regular expression
allows you to work with a select group of files quickly.

One of the more interesting things you can do with a group of files is perform a
query-replace on all of them with a single command. On large projects, a last-
minute change often forces arduous searching and replacing of certain text in each
file. First, select the files you want to include in the query-replace, then press Q
(for dired-do-query-replace). Put in the search string, then the replacement string
(the strings can be plain text or a regular expression) and Emacs starts a query-
replace that moves you through each file sequentially. Here’s the only hitch: if you
interrupt the query-replace with a recursive edit, you can’t restart it without going
back to the Dired buffer.

Another interesting command is searching across files for a given regular expression.
To do this, mark the files, then press A. Emacs stops at the first match; press M-, to
move to the next match.

Navigating Directories

Often when you are cleaning up directories, you’re moving files between them, orga-
nizing subdirectories, and the like. This naturally involves a lot of moving among
directories.

To move to the parent directory of the one you’re in, press A. To move to the next
directory in the buffer, press >; pressing <, not surprisingly, moves you to the previ-
ous directory in the buffer.

Sometimes it’s more convenient to edit a directory and its subdirectories in the same
buffer. To insert a subdirectory in the current Dired buffer, move to it and press i.

136 | Chapter5: EmacsasaWork Environment

Emacs inserts the subdirectory at the end of the buffer. If you insert more subdirecto-
ries in this fashion, they will appear in alphabetical order at the end of the buffer.

As you can see, much of your file maintenance and cleanup can be done easily from
within Dired. Table 5-2 summarizes Dired commands, some of which we haven’t
fully discussed. There’s more to learn about Dired,” but now that you know the
basics, you can experiment on your own.

Table 5-2. Dired commands

Keystrokes Command name Action

Cxd dired Start Dired.

File — Open Directory

A dired-do-search Do a regular expression search on marked files;
Operate — Search Files stops at first match; M-, finds next match.
B dired-do-byte-compile Byte-compile file.

Operate — Byte-compile

C dired-do-copy Copy file.

Operate — Copy to

d dired-flag-file-deletion Flag for deletion.

Mark — Flag

D dired-do-delete Query forimmediate deletion.

Operate — Delete

e dired-find-file Edit file.

Immediate — Find This File

f dired-advertised-find-file Find (so you can edit).

g revert-buffer Reread the directory from disk.

Immediate — Refresh

G dired-do-chgrp Change group permissions.

Operate — Change Group

h describe-mode Display descriptive help text for Dired.

H dired-do-hardlink (reate a hard link to this file; Emacs asks you to
Operate — Hardlink to ... name the hard link (not all 0Ses support hard

i
Subdir — Insert This Subdir ...
k

L
Operate — Load

dired-maybe-insert-subdir

dired-do-kill-lines
dired-do-load

links).

Add a listing of this subdirectory to the current
dired buffer; if it's already there, just move to it.

Remove line from display (don't delete file).
Load file.

*

And if all the Dired features aren’t enough, there’s Dired-x, an add-in module that includes other features
such as omitting unimportant files from the listing, finding files mentioned in any buffer, and additional vari-
ables and means of marking files. For more details, see the Info text on this subject (type C-hi to get to the
Info menu).

Using Dired, the Directory Editor | 137

Table 5-2. Dired commands (continued)

Keystrokes

mor*m

Mark — Mark

M

Operate — Change Mode
n

0
Immediate —

Find in Other Window
Co

Immediate —

Display in Other Window

0

Operate — Change Owner
P

P

Operate — Print

q

Q

Operate —
Query Replace in Files

R
Operate — Rename to

S
Operate — Symlink to

S

t
Mark — Toggle Marks

u
Mark — Unmark

v
Immediate — View This File

w

VA
Operate — Compress

Mark — Flag Backup Files

Command name

dired-mark

dired-do-chmod

dired-next-line

dired-find-file-other-window

dired-display-file

dired-do-chown

dired-previous-line

dired-do-print
quit-window
dired-do-query-replace
dired-do-rename
dired-do-symlink
dired-sort-toggle-or-edit

dired-toggle-marks

dired-unmark
dired-view-file
dired-copy-filename-as-kill

dired-do-flagged-delete
dired-show-file-type

dired-do-compress

dired-flag-backup-files

Action
Mark with *.

Use chmod command on this file.

Move to next line.
Find file in another window; move there.

Find file in another window; don’t move there.

Change ownership of file.

Move up a line.
Print file.

Quit Dired.
Query replace string in marked files.

Rename file.

Create a symbolic link to this file; Emacs asks you
to name the symbolic link.

Sort the Dired display by date or by filename (tog-
gles between these).

Toggle marks on files and directories; pressing t
once marks all unmarked files and directories;
pressing t again restores original marks.

Remove mark.
View file (read-only).

Copy filename into the kill ring; if multiple files are
marked, copy names of all marked files to kill ring.

Delete files flagged with D.

Display information on the type of the file using
the file command.

Compress or uncompress file.

Flag backup files for deletion; C-u ~ removes
flags.

138 | Chapter5: EmacsasaWork Environment

Table 5-2. Dired commands (continued)

Keystrokes
#
Mark — Flag Auto-save Files

&
Mark — Flag Garbage Files

Mark — Mark Old Backups
Immediate — Diff

M-=
Immediate —
Compare With Backup

TorX
Operate — Shell Command

+

Immediate — Create Directory

>
Subdir — Next Dirline

<

Subdir — Prev Dirline
A

$

Subdir — Hide/Unhide Subdir
M-$

Subdir — Hide All
C-M-n

Subdir — Next Subdir
C-M-p

Subdir — Prev Subdir
C-M-u

Subdir — Tree Up
C-M-d

Subdir — Tree Down

*c

Mark — Change Marks
*1or M-Del

Mark — Unmark All

* %

Mark — Mark Executables
*/

Mark — Mark Directories

Command name

dired-flag-auto-save-files

dired-flag-garbage-files
dired-clean-directory
dired-diff

dired-backup-diff

dired-do-shell-command
dired-create-directory
dired-next-dirline
dired-prev-dirline

dired-up-directory
dired-hide-subdir

dired-hide-all
dired-next-subdir
dired-prev-subdir
dired-tree-up

dired-tree-down

dired-change-marks
dired-unmark-all-files
dired-mark-executables

dired-mark-directories

Action

Flag auto-save files for deletion; C-u # removes
flags.

Flag “garbage” files for deletion.
Flag numbered backups for deletion (if any).

Compare this file to another file (the one at the
mark).

Compare this file with its backup file.

Ask for shell command to execute on the current
file or marked files.

(reate a directory.
Move to next directory.
Move to previous directory.

Find the parent directory in a new Dired buffer.

Hide or show the current directory or
subdirectory.

Hide all subdirectories, leaving only their names;
repeat command to show.

Move to next subdirectory (if you've inserted sub-
directories using i).

Move to previous subdirectory (if you've inserted
subdirectories using i).

If you've inserted subdirectories using i, move to
the parent directory in this buffer.

If you've inserted subdirectories using i, move to
the first subdirectory for this directory in this
buffer.

Change marks on specified files, for example, from
* (generic mark) to D (flagged for deletion).
Remove all marks from all files.

Mark executables; C-u * unmarks.

Mark directories; C-u / unmarks.

Using Dired, the Directory Editor | 139

Table 5-2. Dired commands (continued)

Keystrokes Command name Action

*@ dired-mark-symlinks Mark symlinks; C-u * @ unmarks.

Mark — Mark Symlinks

M-} dired-next-marked-file Move to the next file marked with * or D.

Mark — Next Marked

M-{ dired-prev-marked-file Move to previous file marked with * or D.

Mark — Previous Marked

%d dired-flag-files-regexp Flag for deletion files that match reqular expres-
Regexp — Flag sion.

%g dired-mark-files-containing- Mark files whose contents match regular expres-
Regexp — Mark Containing regexp sion.

%] dired-downcase Lowercase marked files.

Regexp — Downcase

%R dired-do-rename-regexp Rename files with filenames that match regular
Regexp — Mark expression.

%u dired-upcase Uppercase marked files.

Regexp — Upcase

Printing from Emacs

Emacs offers several commands for printing buffers and regions. To print a buffer
with page numbers and headers for the filename, type M-x print-buffer Enter. This
command sends the buffer to pr (a program that does simple formatting for listings),
followed by lpr (which sends the listing to the printer). If you want to print the file
directly, without the headers and page numbers that pr provides, give the command
M-x lpr-buffer Enter. You can also use these commands to print a selected portion of
a file. First define a region by setting a mark at one end and moving the cursor to the
other end. Then give the command M-x print-region Enter (or M-x lpr-region
Enter).

The lpr-buffer and lpr-region commands always check the variable lpr-switches to
determine whether any options should be passed to the Unix lpr command. These
options are used to request a particular printer and for many other purposes; see the
manpage for lpr for more information. For example, if you want to use the printer
named Iptl whenever you print from Emacs, you would want to set lpr-switches to
-P1pt1. To do so, add the following line to your .emacs file:

(setq lpr-switches '("-Plpt1"))

Note the single quote preceding, and the parentheses surrounding, the string "-P1pt1".
This is just weird-but-necessary Lisp syntax; see Chapter 11 for more details.

You can also print from Dired. To print the file the cursor is on, type P. Emacs puts
the default printing command in the minibuffer, and you can modify it.

140 | Chapter5: EmacsasaWork Environment

Emacs also includes commands to print a buffer as a PostScript file. If you have for-
matted text in the file, you can print the buffer with those attributes by typing M-x
ps-print-buffer-with-faces.

Table 5-3 provides a summary of commands for printing.

Table 5-3. Printing commands

Keystrokes Action

M-x print-buffer Print the buffer (similar to Unix pr | Ipr).

File — Print Buffer

M-x print-region Print the region (similar to Unix pr | Ipr).

File — Print Region

M-x Ipr-buffer Print buffer with no page numbers (similar to Unix Ipr).

M-x Ipr-region Print region with no page numbers (similar to Unix Ipr).

p From Dired, put the default print command in the minibuffer; you
Operate — Print can change it or press Enter to execute it.

M-x ps-print-buffer-with-faces Print the buffer with text attributes.

File — Postscript Print Buffer

M-x ps-print-region-with-faces Print the region with text attributes.
File — Postscript Print Region

Reading Manpages in Emacs

You can read Unix online documentation (called manpages) from within Emacs by
typing M-x man or by selecting Man from the Help menu.” This command creates a
buffer with a formatted manpage in it, which you can scroll through (or copy from)
using Emacs commands. Simply type: M-x man Enter Unix-command-name Enter.

For the Unix command name, you can use either a simple name, like Is, or a
manpage section name like ttytab(5).

The advantage of using the man command is that you can scroll through the
manpage easier than you can in some terminal applications or shell windows. Also, if
you try to view manpages in shell mode, they may come out garbled if the settings
aren’t right, whereas man gives you clean text.

Using Time Management Tools

Emacs is a natural place to organize all your work. It won’t replace your Palm or
other handheld, but ongoing work in this area may help you sync your favorite

* This feature works on Linux, but not on Windows. To make it work on Mac OS X, set shell-file-name to
/bin/sh.

Using Time Management Tools | 141

device with your Emacs-based schedule. Here we cover the main features that Emacs
itself offers—the calendar and the diary.

Displaying the Calendar

To display the calendar, type M-x calendar. Emacs displays a calendar window with
three months: last month, this month, and next month.

Type: M-x calendar

emacs®@ localhost.localdomain
File Options Buffers Tools Scroll Goto Holidays Diary Moon Help

DExBQ 4 XY

X /home /deb:
| total used in directory 24716 awailable 10080136
drws------ 45 deb deh 8192 Aug 14 16:24 .
drwer-xr- 8 root root 4096 Jul &5 2003 ..
] -LW-r--r-- 1 deh deh 1323 Aug 14 11:45 [Jabbrev_defs
1% - Top LS (Dired by name)--—---c-——-—cm—mmoememmmmmoee o
July 2004 Aagqust 2004 September 2004
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 1 2 3 4 65 &8 7 1 2 3 4
4 5 6 7T & 910 8 910 11 12 13 14 56 7T 8 91011
11 12 13 14 15 16 17 18 16 17 18 19 20 21 12 13 14 15 16 17 18
18 19 20 21 22 23 24 22 23 24 25 26 27 28 10 20 21 22 23 24 25
¥ 25 26 27 28 29 30 31 29 30 31 26 27 28 20 30
F:[x < Calendar ? infofo other/. today Sun, Aug 15, 2004 C-x >

Emacs puts the cursor on today’s date and displays the date on the mode line.
There’s no room to write on the calendar; that’s what the diary is for, which we’ll
discuss shortly.

By default, weeks start on Sunday. If you’d like them to start on Monday instead,
type M-x set-variable calendar-week-start Enter 1 Enter. You enter the calendar
again to have this take effect. If you’d like to have the calendar always start on Mon-
day, add this line to your .emacs file:

(setq calendar-week-start-day 1)

If you’d like to see the calendar each time you start Emacs, you can add this line to
your .emacs file:

(calendar)

Moving in the calendar

When you’re in the calendar, Emacs sensibly moves by day rather than by character.
C-f moves you to the next day; C-b moves you to the previous day. C-n moves you to
the same day of the next week; C-p moves you back a week. The arrow keys work the
same way. M-} and M-{ move forward and backward by month, and C-x [and C-x]

142 | Chapter5: Emacsasa Work Environment

move forward and backward by year. C-v scrolls forward by three months; M-v scrolls
back three months.

The movement commands just discussed move you relative to the cursor position. If
you’re on Tuesday and you press C-n, you’ll move to next Tuesday. If you’re on Jan-
uary 25 and press M-} you’ll move to February 25. If you’re on August 15, 2004 and
press C-x [, you’ll move to August 15, 2003.

Other commands move to the beginning or the end of the week, month, or year. C-a
and C-e move to the beginning and end of the week, M-a moves to the beginning of
the month, and M-< moves to the beginning of the year. Table 5-4 summarizes these
calendar movement commands.

To go to a particular date, press g d. Emacs asks for the year, then the month, and
then the day. Emacs moves you to the day selected (this command is well-suited for
answering that all-important question, “On what day of the week does my birthday

fall in 2020?”).

Table 5-4. Calendar movement commands

Keystrokes

(none)
Tools — Display Calendar

Command name

calendar

Action
Display the calendar.

. calendar-goto-today Move to today’s date.

Goto — Today

f calendar-forward-day Move forward a day.

Cb calendar-backward-day Move backward a day.

Cn calendar-forward-week Move forward a week.

Cp calendar-backward-week Move backward a week.

M-} calendar-forward-month Move forward one month.

M-{ calendar-backward-month Move backward a month.

(x] calendar-forward-year Move forward a year.

Scroll — Forward 1 Year

Cx[calendar-backward-year Move backward a year.

Scroll — Backward 1 Year

Ca calendar-beginning-of-week Move to the beginning of the week.
Goto — Beginning of Week

Ce calendar-end-of-week Move to the end of the week.

Goto — End of Week

M-a calendar-beginning-of-month Move to the beginning of the month.
Goto — Beginning of Month

M-e calendar-end-of-month Move to the end of the month.
Goto — End of Month

M-< calendar-beginning-of-year Move to the beginning of the year.
Goto — Beginning of Year

Using Time Management Tools

143

Table 5-4. Calendar movement commands (continued)

Keystrokes
M->
Goto — End of Year

gd
Goto — Other Date

0
Cx<

Scroll — Forward 1 Month
x>

Scroll — Backward 1 Month
Cv

Scroll — Forward 3 Months
M-v

Scroll — Forward 3 Months
Space

Command name

calendar-end-of-year
calendar-goto-date

calendar-other-month
scroll-calendar-left

scroll-calendar-right

scroll-calendar-left-three-
months

scroll-calendar-right-three-
months

scroll-other-window

Action
Move to the end of the year.

Go to the specified date.

Put the specified month in the middle of the display.
Scroll forward one month.

Scroll backward one month.
Scroll forward three months.
Scroll backward three months.

Scroll another window.

Displaying holidays

Let’s move to a topic everyone is interested in: holidays. To display the holidays for
the part of the calendar you are looking at, type a (for list-calendar-holidays) or
select 3 Months from the Holidays menu.

Type: a

emacs® localhost.localdomain
File Options Buffers Tools Scroll Goto Holidays Diary hoon Help

DB x B X

Friday.
J Monday,
z

[§ Bunday, July 4, 2004: Independence Day
July 9, 2004: Martyrdom of the Bab
September &, 2004: Labor Day
Thursday, September 16, 2004: Rosh HaShansh 5765

Wednesday, September 22, 2004: Autumnal Equinesx 12:20pm (EDT)
Saturday, September 25, 2004: Yom Kippur
Notabhle Dates from July to September,

B o

(X July 2004 Aagust 2004 September 2004
Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa
1 2 3 1 2 3 45 & 7 1 2 3 4
4 5 6 7T & 210 8 910 11 12 13 14 E 6 7 & 91011
11 12 13 14 15 16 17 1§ 16 17 18 19 20 21 12 13 14 15 16 17 18
] 18 19 20 21 22 23 24 22 23 24 25 26 27 Z8 19 20 21 22 23 24 25
- < Calendar ? infofo other/. today Sun, &ug 15, 2004 C-2 >
J¥ Locking up holidays. .. done

Emacs lists holidays for the time period shown.

As you can see, Emacs knows about a fairly wide variety of holidays or, as it calls
them, “notable dates.” If you are somewhere else on the calendar but want to see
holidays surrounding the current month, type M-x holidays. Emacs lists them. To
see whether today is a holiday, type h or select One Day from the Holidays menu.

144 |

Chapter 5: Emacs as a Work Environment

Typing x marks holidays in a special way, typically highlighting them in pink. If the
display doesn’t support this, Emacs puts an asterisk to the right of the date. Typing u
removes the marks.

We have taught you only the bare bones of the calendar commands. Emacs offers to
tell you sunrise and sunset and phases of the moon. You can choose other calendars,
like the Islamic calendar, the Hebrew calendar, the Mayan calendar, or even the
French Revolutionary calendar. But we will leave these for you to explore.

More calendar commands are used in the context of the diary, discussed next.

Using the Diary

The diary, closely related to the calendar, allows you to make notes about certain
dates. You can enter a full daily schedule or just mark major events. The level of
detail is entirely up to you.

Creating a diary file

To use the diary, you must have a diary file that contains notations about important
events or things to do. It can remind you to back up your system every Thursday,
that you get paid every two weeks, that you’re on vacation during the first two weeks
in July, or that your mother’s birthday is August 6.

The file must be called diary and must exist in your home directory. In this file,
you insert lines—or have Emacs write lines for you—that note dates you want to
remember. The diary file need not be all in one format and need not be sorted in
any particular order. Date formats can be mixed: December 19, 2004 could be 12/
19/04, Dec 19 04, or dec 19 2004. Here are a few lines from a diary file to illus-
trate what we mean.

11/14 My birthday

July 17 2004 Company picnic

March 18 2004 Annual report due

January 8 2004 Hair appointment

&Saturday Tea with Queen Elizabeth

Friday Payday
If you don’t specify a year, Emacs assumes you want to mark that date every year, as
in birthdays. If you don’t specify a date but only the day of the week (as in tea with
the queen on Saturday), Emacs displays the diary entry every Saturday. Putting an
ampersand (&) before an entry tells Emacs not to mark it on the calendar (you don’t
want every Saturday marked, and you may not want everyone to know that you hang
around with the royal family).

Date formats can be mixed, but the choice to use European date format (DD/MM/
YYYY or 9 October 2004) versus the default American format (MM/DD/YYYY or

Using Time Management Tools | 145

October 9, 2004) must be made before you create the diary file. To specify European
date format, add this line to your .emacs file:

(setq european-calendar-style 't)

Adding diary entries

You can write your own entries or have Emacs help you put them in. To have Emacs
help you, go to the calendar by typing M-x calendar. Then press g d to specify the
date you want to move to. Press i d (for insert-diary-entry). Emacs moves you to the
diary window with the date written out. You can then make a diary entry next to the
date. If your entry spans more than one line, begin the second and subsequent lines
with a single space, so that Emacs understands it’s a continuation. After you make
the notation about the date, Emacs leaves you in the diary buffer so you can make
more entries. Type C-x b to move to another buffer.

The insert-diary-entry command assumes you want to make a single, one-time
entry. To create a recurring entry, you need a few more commands. To insert a
weekly entry, type i w. Emacs moves you to the diary buffer with the day of the week
written out. Type the weekly activity (such as a staff meeting), and save the diary file.
To insert an annual entry, type iy. Emacs moves you to the diary buffer with the day
and month written out; type the annual event. There is a more specific command for
anniversaries. Type ia to add an anniversary; this entry includes the year (though we
have not seen a function that uses this information for any particular purpose, such
as counting which anniversary this is).

You can also put in cyclic diary entries, entries that occur at regular intervals, like
reminders to change the oil in your car every three months. To do so, move to the
date you changed your oil last and type i c. Emacs says, Repeat every how many days:
and you type the number of days between oil changes. Emacs writes a Lisp function
to handle this and puts it in the diary buffer. You can then make a notation next to
the Lisp function, such as a note that tells you to change the oil. The entry that
Emacs inserts looks like this (we put the part about changing the oil in ourselves):

%%(diary-cyclic 90 12 23 2004) Change the oil

The entry says that every 90 days, counting from the day we inserted the entry,
December 23, 2004, we should change the oil in our car.

You can mark a block of dates, as in the case of a week-long conference or a vaca-
tion. Put the cursor on the first date and press C-Space to set the mark.” Move (using
calendar movement commands like C-f, C-n, and so on) to the second date and press

*

If you normally use another binding for the set-mark command or if you typically spell out that command,
you’ll run into a problem marking regions in the calendar. In the calendar, C-Space and C-@ run calendar-
set-mark rather than set-mark, so that regions are marked by time rather than just across the screen. To
mark regions correctly in the calendar (linearly by time rather than simply across the screen), you must type
C-Space, C-@, or M-x calendar-set-mark to set the mark.

146 | Chapter5: EmacsasaWork Environment

i b. Emacs moves you to the diary buffer and inserts an incantation that marks the
week on your calendar. Make a notation following the Lisp function Emacs inserts.
The entry will look something like this:

%%(diary-block 3 15 2004 3 20 2004) Trip to Alabama
This entry indicates that from March 15 to March 20, we’ll go on a trip to Alabama.

What if you want to note that you have to file your expense report on the fifteenth of
every month? Emacs accepts the asterisk wildcard (*) for the month, as you will see
when you type i m (for insert-monthly-diary-entry). Emacs inserts an asterisk in
place of the month, followed by the day, as in * 15 for something scheduled for the
fifteenth of each month. As always, you make a note following the entry.

Now that you see how Emacs constructs diary entries, you can try writing some of
your own based on what Emacs has done. After all, the diary file is like any other
Emacs file; you can make changes, add lines, and delete lines at will. The only
requirement is that you save the file when you’re through. Now let’s see how to dis-
play diary entries on the appropriate dates.

Displaying diary entries

If you want to review the diary entries for a given date, press d from the calendar. In
order to see the whole diary file, press s from the calendar. If you want today’s diary
entries to display automatically when you start Emacs, add this line to your .emacs file:

(diary)
That way, when you start up Emacs on a day for which there is a diary entry, the
diary entry displays automatically. For example, let’s say you marked your best

friend’s birthday some time ago, and today is the day. When you start Emacs, the
screen would look like this:

You start Emacs.

emacs®localhost.localdomain
File Edit Options Buffers Tools Help

DExEHBES $ahRE XT

|§ ;i This buffer is for notes you don't want to save, and for Lisp evaluation.

;i If you want to create a file, wisit that file with C-x C-f,
;; then enter the text in that file's own buffer.
-u:-- *scratch* Top L3 (Lisp Interaction)-—-———-—————-——————————————————— Bl
Selective display active - press "s" in calendar before edit/copy

J Aug 15, 2004 Assumpta's birthday
7

Emacs displays the diary entry for your friend’s birthday.

Using Time Management Tools | 147

If there are no diary entries for a given day, the diary is not displayed. If you start Emacs
with two files so that you are editing in two windows, the diary is also not displayed.

If you have already put in a (calendar) entry in your .emacs file to have the calendar
displayed automatically, the calendar supersedes the diary, and you’ll have to remove
the calendar if you prefer to see the diary instead.

To mark dates with diary entries in red, press m from the calendar. To remove the
marks, press u. (This command removes highlighting for diary entries as well as for

holidays.)

Table 5-5 summarizes the calendar and diary commands.

Table 5-5. Holiday and diary commands

Keystrokes Command name Action

pd calendar-print-day-of-year Display the day of the year this is (for example,
Day 364 of 365).

po calendar-print-other-dates Display information about this date for all cal-
endars.

Space scroll-other-window Scroll the other window.

q exit-calendar Quit calendar.

a list-calendar-holidays Display holidays for calendar period shown.

Holidays — For Window

h calendar-cursor-holidays In the minibuffer, display holiday information

Holidays — For Cursor Date

for the day the cursor is on.

X mark-calendar-holidays Display holidays in a different typeface, color,
Holidays — Mark or with an asterisk beside them.
u calendar-unmark Remove marks for holidays and diary entries

Holidays — Unmark Calendar

(opposite of x command).

iw insert-weekly-diary-entry Add a weekly entry based on the day of the
Diary — Insert Weekly week.

iy insert-yearly-diary-entry Add an annual entry.

Diary — Insert Yearly

id insert-diary-entry Add an entry for a particular day.

Diary — Insert Daily

im insert-monthly-diary-entry Add an entry for the day of the month.
Diary — Insert Monthly

ic insert-cydic-diary-entry Add an entry to recur every n days.

Diary — Insert Cyclic

ia insert-anniversary-diary-entry Add an annual entry (the year is included for
Diary — Insert Anniversary reference).

ib insert-block-diary-entry Add a block entry.

Diary — Insert Block

m mark-diary-entries Display diary entries in a different typeface,

color, or with a plus sign beside them.

148 | Chapter5: EmacsasaWork Environment

Table 5-5. Holiday and diary commands (continued)

Keystrokes Command name Action

d view-diary-entries Display diary entries for the current date.

s show-all-diary-entries Display diary file.

Diary — Show All

M-= calendar-count-days-region Count the number of days in a region.

M calendar-phases-of-moon Display phases of the moon for a three-month
Moon — Lunar Phases period.

S calendar-sunrise-sunset Given longitude and latitude, display sunrise

and sunset times for the current date.

C-Space or (-@ calendar-set-mark Mark regions by time rather than horizontally.

Problems You May Encounter

In shell mode on Mac OS X, Emacs says, “Warning: no access to tty (Bad file
descriptor). Thus no job control in this shell.” This happens with the graphical
version of Emacs, not with the version run from the Mac OS X Terminal applica-
tion. If you change to a different shell using the instructions under “Which
shell?” earlier in this chapter, the error goes away.

Some commands don’t work on Mac OS X. The graphical version of Mac OS X
fails to find some operating system commands, especially when invoking them
through M-! (for shell-command). Change to a different shell; see “Which
shell?” earlier in this chapter for details. Another problem is that some Unix
commands are not available by default on Mac OS X. Try them in the Mac Ter-
minal application to see if they work at all before trying them in shell mode. To
increase Mac OS X’s Unix functionality, use Fink (http://fink.sourceforge.net) to
download a wide variety of Unix commands and software for Mac OS X.

Some commands don’t work on Windows. This chapter describes many com-
mands that have no Windows equivalent. The Windows port of Emacs works
well for most Dired functions, the calendar, and the diary. To get Unix com-
mand functionality under Windows, install Cygwin (http://cygwin.com).

Printing does not work from Windows on USB printers. Many USB printers do
not support printing from the command line. This problem is not specific to
Emacs.

Using Time Management Tools | 149

CHAPTER 6
Writing Macros

What is a macro? In Emacs, a macro is simply a group of recorded keystrokes you
can play back over and over again. Macros are a great way to save yourself repetitive
work. For example, let’s say you want to delete the third column of a table. Nor-
mally, you would go to the first line; move over to the third column; delete it; then
go to the second line; give the same set of commands; and so on, until you finish,
your fingers wear out, or you get too bored. Emacs lets you record the keystrokes
you used to work on the first line of the table, and then “play these back” repeatedly
until the job is done.”

Any command or action you do within Emacs, from typing text to editing to switch-
ing buffers, can be done within a macro. The key to using macros well is, not too sur-
prisingly, recognizing when you’re doing repetitive work: sensing that you have
pressed more or less the same sequence of keys several times in a row. Once you
learn to recognize repetitious work, you have a good feel for when to use macros.
The next talent that you’ll need is, given that you’ve recognized a cycle of “almost
identical” keystrokes, figuring out how to make that cycle precisely identical—that is,
figuring out a set of keystrokes that, if repeated, will do exactly what you want. Nei-
ther of these skills is particularly difficult; with a little practice, you’ll be using mac-
ros all the time.

If this sounds like lazy man’s programming, it is: macros give you a simple way to do
very complicated things without learning Lisp and without learning any customiza-
tion tricks. If the task you build the macro for is something you have to do fre-
quently, you can save macros and load them when you want to use them. In this
way, you can build up a set of convenient macros that become your own editing
commands. Even if you don’t write Lisp, you’re not limited to the commands Emacs
gives you; you can make your own!

* You could delete the third column of a table by marking it as a rectangle, as described in Chapter 7. But bear
with us for the sake of making this point: when you find yourself doing repetitive work, macros are the tool
to remember.

150

What you use macros for will depend on the kind of work you do in Emacs. We've
used macros to:

Mark up text for formatting.
Copy headings from one buffer to another to create an outline.

Perform complex search-and-replace type operations that query-replace can’t
quite handle.

Create index entries.

Reformat files that were imported from another application.

Edit tables.

Compile, run, and test the output from a program with a single command.

Manipulate and clean large datasets.

You’ll be able to think of many more things to do with macros after you learn the
few basic commands you need to use them.

A Macro Revolution

In this book, we almost never emphasize which version of Emacs we’re talking about.
Macros, specifically changes to macros in Emacs 21.3.5, have forced our hand. Macros
underwent a major overhaul in 21.3.5. Although some of the core key bindings still work
the same way, the keyboard macro functionality was radically expanded. If you are run-
ning an earlier version of Emacs, we encourage you to install the latest version (see
Chapter 13) or go to the web site for this book, http://www.oreilly.com/catalog/gnu3/,
which includes a link to an earlier version of this chapter.

Defining a Macro

To start defining a macro, press F3 or C-x (." The abbreviation Def appears on the
mode line, showing that you are in macro definition mode. In this mode, Emacs
records all the keystrokes that you type, whether they are commands or literal text,

SO

that you can replay them later. To end the macro, press F4 or C-x); you leave

macro definition mode, and Emacs stops recording your keystrokes. Emacs also
stops recording your keystrokes automatically if an error occurs or if you press C-g.

* Mac OS X users may have bound F3 and F4, used in defining and executing macros, to another key. These
users should press Option-F3 and Option-F4 to get the same functionality.

DefiningaMacro | 151

While you’re defining a macro, Emacs acts on your keystrokes as well as recording
them: that is, anything you type while in macro definition mode is treated as a regu-
lar command and executed. While you’re defining a macro, you’re doing completely
normal editing. That way you can see that the macro does exactly what you want it
to, and you can cancel it (with C-g) if you notice that the macro isn’t really quite
what you want.

To execute your macro, press F4 or C-x e. Emacs then replays your keystrokes
exactly. (You can see that F4 has two different functions relating to macros: to end a
macro definition and, after it’s defined, to execute the macro.)

This macro is referred to as the “last” keyboard macro, with last here meaning most
recent. Only one macro is the last keyboard macro. A macro ring, much like the kill
ring, allows you to access a number of macros during an Emacs session.

Table 6-1 shows the steps required to define and execute a macro. This macro takes
a list of names in the ordinary First Name Last Name order and changes it to the fre-
quently needed Last Name, First Name order.

Table 6-1. Steps for creating name transposition macro

Keystrokes Action

F3or Cx (Start the macro; Def appears on the mode line.
Ca Move to the beginning of the current line.

M-f Move forward a word.

, Type a comma.

M-t Transpose first and last.

Cn Move to the next line.

F4orCx) End the macro definition.

152 | Chapter6: Writing Macros

Define the macro using the keystrokes given in Table 6-1.

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S D8 X8

[§ Cameron, Deb
Jim Elliott]]
Marc Loy
Eric Raymond
Duffy Craven
Kewin Dick
Li=m Hurley
Eric Pement
Bill Rosenblatt
Fran Harrell

{ Beth Fawini

--:** nanes Top L2 (Text Fill)—-—--————mmommmmmmmmmmmmo o

JX Eevhoard macro defined

In defining the macro, you transposed the names on the first line, leaving the cursor

on the second line.

Now let’s be brave and assume the macro works; we’ll try repeating it five times by
prefacing the command to execute a macro with M-5. Of course, in real life, you’d

be better off trying it once before doing anything so bold.

Type M-5F4 or M-5 Cxe

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Help

DExHE S $ D8 X8

[§ Cameron, Deb
Elliott, Jim
Loy, Marc
Raymond, Eric
Craven, Duffy
Dick, Eewin
Li=m Hurley
Eric Pement
Bill Rosenblatt
Fran Harrell

{ Beth Fawini

--:** nanes Top L7 {Text Fill)—-———————m—mommmmm oo oo

[¥ -G 4

Now we’ve done the first six lines: one by defining the macro and five more by exe-

cuting it.

The macro works well, so we can finish the rest of the buffer with confidence: type
M-100, then C-x e or F4. Emacs stops automatically when you reach the end of the
buffer, so it doesn’t matter if you repeat the macro more times than necessary.

Defining a Macro

Here are a few points to remember:

* Don’t forget to press F4 or C-x) when you’ve finished the macro. If you try to
execute a macro before it has been defined, Emacs complains and forgets the
macro’s definition.

* C-g terminates a macro, causing Emacs to forget its definition.

* Virtually any error automatically terminates a macro. If Emacs beeps at you, you
have to start over.

* Emacs executes the keystrokes exactly as you type them, with no intelligence
whatsoever. Avoid making assumptions like, “Of course I'll be at the beginning
(or end) of the line when I execute the macro.”

If you invoke a macro and it does the wrong thing, you can use C-_ to undo it.
Emacs is smart enough to realize that “undo the last command” means “undo the
entire macro” rather than “undo the last command within the macro.” However, if
you repeat a macro multiple times using M-n, C-_ undoes only the last instance of
the macro, not all the instances.

Tips for Creating Good Macros

It’s easy to learn how to record and reuse your keystrokes. However, when you’re
starting out, you make a few mistakes: you create a macro, use it, and then find out
that it doesn’t do exactly what you thought. With a little care, it’s easy to make your
macros more useful and less vulnerable to mistakes.

Good macros work in all situations. Therefore, within a macro, you should use com-
mands that are absolute rather than relative. For example, if you write a macro that
puts a formatting string around the word the cursor is on, you want the macro to
work no matter how long the word is. Therefore, you would use an absolute com-
mand such as M-f (for forward-word) rather than a few C-fs to move forward one
character at a time. Similarly, commands such as C-e and C-a are good for finding
the beginning or end of a line rather than moving the cursor forward or backward.

Often, macros start with a search command that brings you to the place in the file
you want the macro to start. It’s a good idea to type the search argument (as in C-s
searchstring) rather than using the command to repeat the last search (C-s C-s). You
may have changed the search string between the time you define the macro and the
time you execute it, and C-s C-s remembers only what the last search string was.

It is often a good idea to add extra commands (typically C-a and C-e) that aren’t
strictly necessary, just to make sure that you’re positioned correctly on the line. The
fewer assumptions that a macro makes, the better it works. So, if a sequence of com-
mands works correctly only if you start at the end of the line, start the macro with C-e,
even if you already “know” that you want to give the command only when you’re at
the end of the line.

154 | Chapter6: Writing Macros

Finally, while we’re reciting rules and cautions, here’s one more: keep in mind that
you probably want to execute macros repeatedly. With a little foresight, you’ll be
able to create macros that can be executed in long chains without problems.

In general, good macros have three parts:

* They find the place you want the macro to start working (often using search).
* They do the work that needs to be done on the text.

* They prepare themselves to repeat.

How can a macro prepare itself to repeat? For example, assume that you’re writing a
macro to delete the third column of a table. After deleting the column, the macro
should position itself at the beginning of the next line (or wherever it needs to be) so
you don’t have to reposition the cursor before reusing it.

Here’s a slightly more complex example. If you start a macro with a search, you have
to make sure that the end of the macro moves the cursor past the last spot you
searched for. If you don’t, the macro will keep finding the same place in the file and
never go on to the next occurrence of what you’re searching for. As a general rule, if
your macro operates on a line of text, it should end by moving to the beginning of
the next line. Remember that your goal is to create a sequence of keystrokes that can
be executed many times in a row, with no interruption.

A More Complicated Macro Example

Sometimes you may want to find all the references to a particular topic in a file.
Table 6-2 lists steps for creating a macro that takes takes every sentence in the buffer
that contains the word Emacs and copies it to another buffer. If you try this macro,
you’ll need to type some text about Emacs into a buffer. You can also get a test file to
work with by opening the Emacs NEWS file (using C-h n), then writing it to a file (C-
x C-w NEWS). This buffer is in view mode by default; change to text mode by typ-
ing M-x text-mode Enter.

Table 6-2. Steps for macro that creates a buffer of Emacs references

Keystrokes Action

F3orCx (Start macro definition; Def appears on the mode line.

C-s emacs Find the word Emacs.

Enter Stop the search after it is successful; if the search is unsuccessful, it
rings the bell and stops the macro.

M-a Move to the beginning of the sentence.2

(-Space Set the mark.

M-e Move to the end of the sentence.

M-w Copy the sentence to the kill ring.

A More Complicated Macro Example | 155

Table 6-2. Steps for macro that creates a buffer of Emacs references (continued)

Keystrokes Action

C-x b emacsrefs Enter Move to a buffer called emacsrefs.

Gy Insert the sentence.

Enter Start the next sentence on a new line.

C-xb Enter Move back to the original buffer.

F4orC-x) End the macro definition; Def is removed from the mode line.

a M-a’s definition of a “sentence” is controlled by the variable sentence-end, which is a fairly
complex regular expression. By default, a sentence ends with a period, question mark, or
exclamation mark, optionally followed by a quotation mark or parenthesis (including brack-
ets or braces), and followed by two or more spaces or a newline.

Now, assume that you’ve already constructed the macro outlined in Table 6-2 and
that you can invoke it with F4. The following screen shows what happens when you
run it five times and then display the emacsrefs buffer.

Type: M-5 F4 or M-5 C-x e, followed by C-x b Enter

emacs@ localhost.localdomain
File Edit Options Buffers Tools Help

DEx HE S s 8bh8 X8

[§ GNU Emacs NEWS -- history of user-visible changes.

Please send Emacs bug reports to bug-gnu-emacs@gro. org.

For older news, see the file ONEWS

Tou can narrow news to the specific wersion by calling
“view-emacs-news' with a prefix argument or by typing G-u C-h C-n.

* Installation Changes in Emacs 21.4

*+ Emacs includes now support for loading image libraries on demand.

*+ B Bulgarian translation of the Emacs Twtorial is available.

7

-u:*+ emacsrefs a1l L10 Rk i N koot i gt i o et et 5|

IX |

By executing the macro repeatedly, we’ve created a buffer that contains references to
the Emacs editor.

As in the previous example, you can jump back and forth between an unlimited
number of buffers while defining a macro. Macros don’t need to be confined to one
buffer. Macros that work with several buffers are more difficult to debug; when sev-
eral buffers are involved, it becomes harder for you to keep track of where the cursor
and the mark are. It is also easy to make mistaken assumptions about what buffer
you’re visiting; hence, it’s a good idea to specify the buffer name explicitly. How-
ever, after you get accustomed to working with macros and multiple buffers, you’ll
be amazed at how much work you can do with almost no effort.

156 | Chapter6: Writing Macros

Windows are sometimes useful in macros, but, again, you have to watch out. It’s
better to start a macro with one window on the screen, have the macro open other
windows, and finally close all but one window (C-x 1). If you write a macro with two
windows on the screen and later try to execute it with four windows on the screen,
the results will be unpredictable at best! In general, moving to a named buffer, C-x b
buffername, is preferable to moving to the “other” window using C-x o (too vague to
be generally useful). The other window could be anything—a *Help* bulffer,
Completion buffer, *shell* buffer, and so on. Moving to a named buffer always
gets you to the right place, no matter how (or whether) the buffer is displayed.

Editing a Macro

You can edit a macro and make changes to it in a few different ways. For this exam-
ple, we chose an all-purpose editing command, edit-kbd-macro, which is bound to
C-x C-k e. Several macro editing commands are available, but this one works for all
types of macros, so it’s good to learn.

Our macro could use a bit of tweaking. First of all, finding references to Emacs in our
copy of the Emacs NEWS file is pretty lame. Perhaps we’re interested in using a
mouse more frequently with Emacs and would like to know about changes to that
part of the interface. We’ll edit the macro to search for the word mouse. We’ll also
modify it so it marks a paragraph rather than a sentence since a sentence doesn’t
really provide enough context to be helpful.

Let’s start editing the macro.

Type: C-xC-ke

emacs®|ocalhost.localdomain
File Edit Options Buffers Tools Help

DExEHE I s ODHREXT

*++ B Bulgarian translation of the Emacs Tutorial is available.

]
7
-u:** emacsrefs Bot L10 (Text Fill)——---—omomommmmmmmmmmmmoo e)
[¥ Eeyboard macro to edit (C-x e, M-x, C-h 1, or keys): || J

Emacs prompts you for the type of macro to edit.

Emacs asks you if you want to edit the last keyboard macro (C-x e), a named macro
(M-x), the last 100 keystrokes as a macro, termed “lossage” (C-h 1), or keys (mean-
ing the keystrokes you bound a macro to). Yes, that’s a lot of choices, and later in the
chapter we describe named macros and binding macros to keys (you can experiment

EditingaMacro | 157

on your own with creating a macro from lossage). For now, just choose C-x e to edit
the last keyboard macro.

Type: C-xe
emacs®localhost.localdomain

File Edit Options Buffers Tools Help

OB x 78

[§ Comnand: last-kbd-macro
Eey: none
Macra:
E-= ;i isearch-forward
EMaCs ;5 self-insert-command *+ 5
RET ;i newline
M-a ;i backward-szentence
G-5PC ;i set-mark-command
M-e ;i forward-sentence
M-w ;i kill-ring-save
G-x b ;i switch-to-buffer
emacsrefs ;i self-insert-command *+ 9
RET ;i newline
G-y ;s yank
RET ;i newline

~ o-x b ;i switch-to-huffer

f{ ERET ;i newline

-u:*+ *Edit Macro* FBot L9 (Edit Macro)--------—-—--—-—-——-——-—-——- 4

Emacs opens an *Edit Macro* buffer.

Notice two fields near the top of this buffer, Command: and Key:. Right now, Command:
says last-kbd-macro. If this were a named macro, the command would be the name
you gave your macro. Additionally, for frequent use, you can bind your macro to a
key, at which point the Key: field lists the keystrokes to execute this macro. Right
now it says none because we haven’t defined any keystrokes yet.

Note that Emacs inserts comments all through the macro. It’s attempting to map
keystrokes to commands. You do not need to update these comments or add com-
ments if you add commands to your macro; Emacs does that itself.

To tweak our macro, we change the search string on the second line from emacs to
mouse. Note that we can just press C-k to wipe out the line and type mouse. Now
change M-a to M-{ and M-e to M-}. We change the buffer name from emacsrefs to
mouseinfo.

158 | Chapter6: Writing Macros

We’ve made the edits from the previous paragraph. The screen looks like this:

emacs®localhost.localdomain
File Edit Options Buffers Tools Help
OB x 508 XE
[Command: last-kbd-nacro
Key: none
Macro:
G-= ;i isearch-forward
TS e
RET ;i newline
M-{ ;5 backward-sentence
C-5PC ;i set-mark-command
M-} ;; forward-sentence
M-w ;i kill-ring-szave
C-x h ;5 switch-to-huffer
mouseinfal
RET ;i newline
G-y ;i yank
RET ;i newline
~ Ct-xh ;i switch-to-buffer
{ ERET ;i newline
-u:** *Edit Macro* Eot L17T (Edit Macro)------————————————- Bl

A modified macro that captures information about using a mouse in Emacs.

To exit the macro editing buffer, we have to type C-c C-c and go back to our NEWS
buffer. Let’s do that and then execute the macro again to see what happens.

Type: C-c C-c C-x b Enter M-< M-5 F4 C-x b Enter M-<

Fil

emacs@ localhost.localdomain

e Edit Options Buffers Tools Help

DEx HES s b8 XT

[

1

*+ New command *display-local-help' displays any local help at point
in the echo area. It 1s bound to "C-h . '. It normally displays the
same string that would be displayed on mouse-owver uvsing the
“help-echo' property, but, in certain cases, it can display = more
kevboard oriented alternative.

++ Under X, mouse-wheel-mode is turned on by default.

+++
** New display feature: focus follows the mouse from one Emacs window
to another, even within a frame. If you set the wvarishle
mouse-zautoselect-window to non-nil walue, moving the mouse to a

{ different Emacs window will select that window (minibuffer window can
-u:*+ mouseinfo Top L1 P e o AN |
J% Mark set J

The mouseinfo buffer shows paragraphs from our copied NEWS file that mention the

mouse.

Editing a Macro

159

The Macro Ring

Although our latest macro is interesting, it’s not really a general purpose macro. It is
a temporary solution to a one-time problem. It saves you some work, but it isn’t gen-
eral enough to save and use again. On the other hand, our macro to transpose names
is generally useful. We’d like to use it again. We’d like to bind it to a key. But it is no
longer the “latest” keyboard macro.

As we mentioned earlier, Emacs has a macro ring much like the infamous kill ring.
It’s useful in the case we’ve just described, but it’s also useful because of the fragility
of the macro definition process. You create a macro and make a wrong move that
rings the bell, and your macro is canceled. It’s fairly easy to create a macro that does
nothing. Perhaps the macro that you just created was wonderful, and this new non-
functional nothing macro has supplanted it. Again, the macro ring is the solution. To
delete a macro from the ring, type C-x C-k C-d (for kmacro-delete-ring-head). This
deletes the most recently defined keyboard macro.

What if you want to swap the positions of two macros? Instead, type C-x C-k C-t (for
kmacro-swap-ring). This transposes macros 1 and 2.

In a more general sense, you can cycle to the previously defined macro by typing C-c
C-k C-p (for kmacro-cycle-ring-previous). To move the ring the other way, type C-x
C-k C-n (for kmacro-cycle-ring-next). The familiar C-p for previous and C-n for next
bindings are appended to the general macro keyboard prefix C-x C-k.

Before we can work with the transpose names macro, we must either define it again
or, if you've been working through our examples, type C-x C-k C-p to move to the
previous macro.

Binding Your Macro to a Key

Binding a macro to a key is easy. The key sequences C-x C-k 0 through 9 and capital
A through Z are reserved for user macro bindings. You can choose one that strikes
you as mnemonic for your macro.

For example, to bind our transpose names macro to C-x C-k T, type C-x C-k b.
Emacs prompts for the key binding. Type C-x C-k T Enter. Emacs confirms,
Keyboard macro bound to C-x C-k T.Binding a macro command to a key in this way
works for only one session. We want to keep this macro, so read on to find out how
to make this binding permanent.

160 | Chapter6: Writing Macros

Naming, Saving, and Executing Your Macros

In this section, we’ll describe how to save macros so that you can use them in differ-
ent editing sessions. To save a macro, bind it permanently to a key, and load it in
subsequent Emacs sessions, follow these steps:

1.
2.

Define the macro, if you haven’t already.

Type C-x C-k n (for name-last-kbd-macro). Now type a name for your macro
and press Enter. A non-Emacs sounding name is best so that Emacs doesn’t con-
fuse it with one of its own commands. Once you’ve executed this command,
Emacs remembers the macro for the rest of the editing session. To use it again,
type the command M-x name (where name is the name you’ve chosen). Emacs
treats your named macro like one of its own commands; it shows up in comple-
tion lists if you press Tab after typing a few letters of the name.

. If you want to save the macro definition permanently, you must insert the macro

definition into a file. This could be your .emacs file or a macro file that you load
through your .emacs file. Type C-x C-f filename Enter to find the file into which
to insert the definition and move to the end of it by typing M->.

. Type M-x insert-kbd-macro Enter macroname Enter. Emacs inserts Lisp code

that represents your macro.

. Add a line to .emacs make the key binding permanent. For example, if we called

our macro transpose-names and bound it to C-x C-k T, we would add this line
to our .emacs file (or other macro definition file):

(global-set-key "\C-x\C-kT" 'transpose-names)

. If you save the macro in some other file, it won’t be loaded automatically. For

example, let’s say that you have defined a macro called transpose-names and
placed it in the file html.macs, in the directory ~/macros. Add this line to your
.emacs file to load your macros automatically:

(load-file "~/macros/html.macs")

. Save the .emacs file and, if different, the file in which you inserted your macro.

Exit and restart Emacs. You can now execute this macro either by typing M-x
transpose-names Enter or by pressing C-x C-k T.

Building More Complicated Macros

So far, we’ve covered the basics of writing, executing, and saving keyboard macros.
Now let’s discuss a couple of more advanced features Emacs lets you add to your
macros: pausing a macro for keyboard input and inserting a query in a macro.

Building More Complicated Macros | 161

Pausing a Macro for Keyboard Input

Sometimes it’s useful to pause a macro briefly so you can type something. For exam-
ple, if you write a lot of letters, you could have a macro that prints out a template
and then pauses for you to fill in variables (such as the date and the recipient’s
name). You can perform this task (and similar tasks) by inserting a recursive edit into
a macro. A recursive edit is just a fancy way to say, “Stop and let me type a while,
then pick up the macro where I left off.”

When you’re defining a macro, type C-u C-x q at the point where you want the
recursive edit to occur. Emacs enters a recursive edit. (You can tell you’re in a recur-
sive edit because square brackets appear on the mode line; you’ll see them in the
screenshots later in this section.) Nothing you type during the recursive edit becomes
a part of the macro. You can type whatever you want to and then press C-M-c to exit
the recursive edit. Notice how the square brackets disappear when you type C-M-c.
When the square brackets are no longer on the screen, you have left the recursive
edit. Anything you type at this point becomes part of the macro. You can put as
many pauses in your macros as you want to.

Example

Here’s an example of a macro that puts a business letter template on the screen and
uses recursive edits to let you type your return address, the recipient’s name and
address, and the date. Because the brackets on the mode line are a pretty subtle clue
to what you are going to type, we'll give the user of this macro explicit instructions
about what to type. Table 6-3 provides these instructions.

Table 6-3. Steps for creating a business letter macro

Keystrokes Action
F3 or C-x (Start keyboard macro definition.
M-5 Enter Putin 5 blank lines.

Type your address and press C-M-c
Ca
CuCxq

C-M-c
Ce
M-5 Enter

Type recipient name and address and
press (-M-c

Ca
CuCxq
C-M-c

Display Type your address and press C-M-conthescreen.
Move to the beginning of the line.

Enter a recursive edit, during which the keystrokes you type are not recorded as
part of the macro.

Exit the recursive edit.
Move to the end of the line.
Move the cursor down 5 lines.

Display Type recipient name and address and press C-M-c
on the screen.

Move to the beginning of the line.
Enter a recursive edit.

Exit the recursive edit.

162 | Chapter6: Writing Macros

Table 6-3. Steps for creating a business letter macro (continued)

Keystrokes Action

Ce Move to the end of the line.

M-5 Enter Move the cursor down 5 lines.
Type date and press C-M-¢ Display Type date and press C-M-con thescreen.
Ca Move to the beginning of the line
CuCxq Enter a recursive edit.

C-M-c Exit the recursive edit.

Ce Move to the end of the line.

M-5 Enter Move the cursor down 5 lines.
Dear Space Display Dear on the screen.
F4orCx) End keyboard macro definition.

The following screens show what the macro defined in Table 6-3 looks like when
you run it.

Type: F4

emacsd localhost.localdomain
File Edit Options Buffers Tools Help

DExEHEBES $ D& XT
7

fvpe your address and press C-M-c

|
F%:** letter &1l L& i = g 8 0 1 e oo s bt b et 5|

The macro pauses so that you can type your address.

Building More Complicated Macros | 163

Type your address and press: C-M-c

TEE South Avernue
Plainfield, NI 07093

fiype recipient name and address and press C-M-c

H AButo-saving. . . done

The macro pauses so you can type the recipient’s name and address.

Type the recipient’s name and address and press: C-M-c

b4 emacs® localhost.localdomain

TEE South Avenue
Plainfield, NI 07093

Ursula Andress
T8 Blue Sky Terrace
Las Vegas, NV T33Z1

fype date and press G-M-c

—

The macro pauses so you can type the date.

164

Chapter 6: Writing Macros

Type the date and press: C-M-c

emacs® localhost.localdomain
File Edit Options Buffers Tools Help
= ._/ 5 ﬁ -

ODExHdBE S $ Bl &8 XT
Y

TEE South Avenue

Plainfield, NI 07092

Ursula Andress

T8 Blue Sky Terrace

Las Vegas, NV T733I1

October 20, 2005

Dear I
-u:** letter &1l L24 M= 0 1 e e o g St |
I

The macro finishes by typing the opening for the letter.

Now the macro has finished editing; you can type the recipient’s name and then the
body of the letter, and of course you can go back and edit any of the information
you’ve already filled in.

Adding a Query to a Macro

The more complex the task your macro performs, the more difficult it is to make the
macro general enough to work in every case. Although macros can do a lot of things,
they aren’t programs: you can’t have if statements, loops, and the other things you
associate with a program. In particular, a macro can’t get input from the user and
then take some action on the basis of that input.

However, one feature lets a macro get input, in a limited way, from the user. You can
create a macro that queries the user while it is running; it works much like a query-
replace. To create this kind of a macro, type C-x q when you reach the point in the
macro definition where you want the macro to query the user. Nothing happens
immediately; go on defining the macro as you normally would.

Things get interesting later, when you execute the macro. When it gets to the point
in the macro where you typed C-x q, Emacs prints a query in the minibuffer:

Proceed with macro? (y, n, RET, C-1, C-1)

Building More Complicated Macros | 165

The

responses listed here are analogous to those in query-replace:

Pressing y means to continue and go on to the next repetition, if any.

Pressing n means to stop executing the macro but go on to the next repetition, if
any.

Pressing Enter means to stop executing the macro and cancel any repetitions.

Pressing C-r starts a recursive edit, which lets you do any editing or moving
around you may want to and then resume the macro when you exit the recur-
sive edit. To exit a recursive edit, press C-M-c. Emacs again asks if you want to
proceed with the macro, and you type y for yes or n or Enter for no.

Pressing C-1 puts the line the cursor is on in the middle of the screen (this is good
for getting a feel for the context). Similar to C-r, Emacs again asks if you want to
proceed with the macro, and you have to answer y, n, or Enter.

Pressing C-g (although not listed as an option) cancels the query and the macro;
it is similar to pressing Enter.

Example

Let’s say that you write a macro that copies comments from a program to another
buffer. The comments in our program are preceded by a slash, so you start the

mac

ro with a search for a slash. However, not all comments are worth copying.

Following the search with a query lets you decide case by case whether the search

has

found a comment you want to copy. Table 6-4 shows a macro to copy com-

ments to another buffer.

Table 6-4. Comment-copying macro with a query

Keystrokes Action
F3 Start the macro definition.
Cs/ Search for a slash.
Enter Stop the search when it is successful.
Cxq Insert a query in the macro; Emacs asks you if you want
to proceed at this point when you run the macro.
M-f Move forward one word.
M-b Move to the beginning of this word.
(-Space Set the mark.
Ce Move to the end of the line.
f Move forward one character.
M-w Copy the comment to the kill ring.
166 | Chapter6: Writing Macros

Table 6-4. Comment-copying macro with a query (continued)

Keystrokes Action

Cxbcomments Move to a buffer called comments.
Gy Insert the comment in the buffer.
Cxb Move back to the original buffer.

F4 End the macro definition.

Executing Macros on a Region

A special command lets you execute a macro on each line in a region. How fre-
quently do you encounter an email with text that you want to yank, but that is
quoted several indentation levels? Of course, we can think of several ways to delete
the indentation quickly, but a line-oriented macro is a quick approach too. You
define the macro and execute it on a region by typing C-x C-k r (for apply-macro-to-
region-lines). Remember that earlier we said that macros should set themselves up to
repeat? This command is different because it expects to work on one line at a time.
You don’t want to set it up to repeat by moving to the next line; it does that auto-
matically.

Table 6-5 shows a quick line-oriented macro that deletes indentation marks from
text quoted in an email or newsgroup message.

Table 6-5. Macro for deleting indentation marks

Keystrokes Action

F3 Start the macro definition.

Ca Move to the beginning of the line.

M-f Move forward one word.

M-b Move to the beginning of this word.

(-Space Set the mark.

Ca Move to the beginning of the line.

Cw Delete the extraneous indentation characters.
F4 End the macro definition.

Executing Macros on aRegion | 167

Initial state:

o8 Emacs@Debra-Camerons-Computer.local
DExHBA s ¥BRRQEXT

=If you haven't seen 1t yet, check out the Lost Skeleton of Codavro lr
=(troiler ot

=http://wwn.apple. com/troilers/sony_pictures/lost_skeleton/). The
»diolog i1s beyond ridiculous ond so is the acting. Well worth o
>rental for Plan 9 ond Ed Wood fans.

=>The troiler doesn't do this flick justice, IMHO, though it gives o sense
=>thot you're not going to hove to think too hard while loughing your
=>woy through this independent film farce.

=>>1'm with the critics on this one; thought it was horrible, woy over L'
>>>the top. Atmospherium!?!] 1
--:**_Fmocs skeleton Top L12 (Text FLl1)----------- - e o m e =

/)

Text indented at various levels (Mac OS X).

Mark the text as a region, move to the beginning of the region, then type: C-x C-kr

en0e Emacs@Debra-Camerons-Computer.local
DExHA Y ¥BDHQEXT

If you hoven't seen 1t yet, check out the Lost Skeleton of Codavro lr
troiler ot

http://ww.opple.com/trailers/sony_pictures/lost_skeleton/). The
diolog is beyond ridiculous ond so is the octing. Well worth o
rental for Plan 9 aond Ed Wood fans.

The trailer doesn't do this flick justice, IMHO, though it gives o sense
thot you're not going to hove to think too hard while loughing your
woy through this independent film farce.

I'm with the critics on this one; thought it wos horrible, waoy over N/
the top. Atmospherium!?! £
Al

--:*¥*-Emocs skeleton Top L13 (Text Fill)-----------mommomoiom oo
P

Indentation is deleted (Mac OS X).

Beyond Macros

Macros are an important tool for streamlining repetitive editing. They let you write
your own commands for performing complex tasks without needing to know any-
thing more than you already know: the basic Emacs commands for moving around
and manipulating text. Even if you’re an Emacs novice, you should be able to use
macros with little difficulty.

168 | Chapter6: Writing Macros

However, Emacs is almost infinitely flexible, and macros cannot do everything. In
many situations, there’s no substitute for writing a Lisp function that does exactly
what you want. If you know Lisp or would like to learn some, you can write your
own Lisp functions to do more complex tasks than keyboard macros can handle.
Chapter 11 covers the basics of writing Lisp functions.

Table 6-6 summarizes macro commands.

Table 6-6. Macro commands

Keystrokes Command name Action

Cx(kmacro-start-macro Start macro definition.

F3 kmacro-start-macro-or-insert- Start macro definition. If pressed while defining a macro,

counter insert a counter.

Cx) kmacro-end-macro End macro definition.

F4 kmacro-end-or-call-macro End macro definition (if definition is in progress) or invoke
last keyboard macro.

Cxe kmacro-end-and-call-macro Execute last keyboard macro defined. Can type e to repeat
macro.

CxCkn name-last-kbd-macro Name the last macro you created (before saving it).

(none) insert-kbd-macro Insert the macro you named into a file.

(none) macroname Execute a named keyboard macro.

Cxq kbd-macro-query Insert a query in a macro definition.

CuCxq (none) Insert a recursive edit in a macro definition.

C-M-c exit-recursive-edit Exit a recursive edit.

CxCkb kmacro-bind-to-key Bind a macro to a key (C-x C-k 0-9 and A-Z are reserved for
macro bindings). Lasts for current session only.

C-x C-k Space kmacro-step-edit-macro Edit a macro while stepping through it (in our opinion, the
interface is overly complex).

Cx Gkl kmacro-edit-lossage Turn the last 100 keystrokes into a keyboard macro. If any
mouse clicks are among the last 100 keystrokes, does not
work.

CxCke edit-kbd-macro Edit a keyboard macro by typing C-x e for the last keyboard
macro defined, M-x for a named macro, C-h I for lossage, or
keystrokes for a macro bound to a key.

C-x C-k Enter kmacro-edit-macro Edit the last keyboard macro.

(xCkCe kmacro-edit-macro-repeat Edit the last keyboard macro again.

CxCkCt kmacro-swap-ring Transpose last keyboard macro with previous keyboard
macro.

CxCkCd kmacro-delete-ring-head Delete last keyboard macro from the macro ring.

CxCkCp kmacro-cycle-ring-previous Move to the previous macro in the macro ring.

CxCkCn kmacro-cycle-ring-next Move to the next macro in the macro ring.

CxCkr apply-macro-to-region-lines Apply this macro to each line in a region.

Beyond Macros |

CHAPTER 7

Simple Text Formatting and
Specialized Editing

Emacs is fundamentally a text editor, rather than a word processor: it is a tool that
creates files containing exactly what you see on the screen rather than a tool that
makes text files look beautiful when printed. However, Emacs does give you the
capability to do the following:

* Indent text using tabs and other indentation tricks.
* Center words, lines, and paragraphs of text.

* Hide and show portions of a document using outline mode, which gives you a
feel for a document’s overall structure. Outline mode can make it easier to go
from rough outline, to detailed outline, to rough draft, to the final product.

* Edit by column rather than by line (especially helpful when you create or change
tables or work with column-oriented datasets), referred to in Emacs as rectangle
editing.

* Create simple pictures using keyboard characters or the mouse.

Much of this chapter, though, focuses on some fairly simple stuff: tabs and indent-
ing text. We describe Emacs’s behavior in primarily two major modes: fundamental
mode and text mode. If you are a developer, you’ll probably want to write code in a
mode appropriate to the language you’re using; see Chapter 9 for details. If you use a
markup language like HTML, see Chapter 8 for additional relevant information.

Using Tabs

Tabs provide an easy way to do some simple formatting. While we were revising this
book, we found that the way Emacs handles tabs has changed a great deal. This sec-
tion describes first how Emacs works by default and then discusses what you can do
to change the default behavior to meet your needs.

170

How Emacs 21 Handles Tabs by Default

If you open a new file in text mode, tabs are set every eight spaces by default. (Pro-
gramming modes have their own indentation behavior; see Chapter 9 for details.)

Press Tab.

emacs®localhost.localdomain
File Edit Options Buffers Tools Help

DE xHBE S & 86 Q8 XE
[|

£

-—.#+ tahs all 11 {Text Fill)==———oo=ooooooooooooooooooo g

I |

Pressing Tab in text mode or fundamental mode inserts a tab character that moves
the cursor forward eight columns by default.

Watch what happens when we type a sentence. The default tab stops change auto-
matically.

Type: It was the best of times Enter Tab Tab

emacs®localhost.localdomain
File Edit Options Buffers Tools Help

DExEHES $O0DHRE XD

It was the best of times

£
-—.++ tahs all 1.2 {Text Fill)—=———oo=ooooooooooooooooooo g

I |

Pressing Tab twice moves the cursor under the word was, clearly less than eight
columns.

Every time you press Tab, Emacs moves the cursor under the next word. This is the
behavior that many people expect when writing code. Neatly lined up code is easier
to read.

As we experimented with this feature, we would tab across under each word, and
press Enter. What happens next is surprising if you are not expecting it. Emacs con-
siders that newline to be the only character you typed on the line, so pressing Tab on
a subsequent line brings you nearly to the end of the line.

UsingTabs | 171

Press Tab repeatedly to the end of the window, press Enter, then press Tab once.

emacs®localhost.localdomain
File Edit Options Buffers Toaols Help

DExEHBE S s HRE XD

It was the best of times

-—:** tabs Top L3 (Text Fill)-————————————————————

4

Emacs moves the cursor to the column where you pressed Enter.

If you press Enter but don’t press Tab at all, the indentation level moves back to the

left margin.

Changing tabs to align with each word can be helpful, if, for example, you’re typing
tables. However, the default tab behavior may not be helpful to you in all situations.
If you are interested in changing the default behavior, read on and we’ll describe how

to get Emacs to do what you want it to do.

Changing Tab Stops

By default (and if text is not lining up with some previous line of text), tabs are set
every eight characters. Emacs allows you to change the positions of the tab stops. To
change the tab stops, type M-x edit-tab-stops. A *Tab Stops* buffer appears.

Type: M-x edit-tab-stops

W
File Edit Options Buffers Tools Help

= 0%

DEx HE § b & x-
IE : : : : : :

2

To install changes, type C-c C-c

1 3 4 3 6 T3
01234567800123456789012345678001234567850123456739012345678901 23456785901 »

-u:**+* *Tah Stops* all (1,0 (Fundamental Ovwrt)------—-—-—----

]

It

You now see a tab stop ruler; colons show the locations of tab stops.

172 | Chapter7: Simple Text Formatting and Specialized Editing

The colons in the first line of the display show you where tab stops are currently
located. The next two lines form a ruler that shows each character position on the line.
To insert a tab, use C-f to move to the desired column, and then type a colon (:). To
delete a tab, move to the desired tab, and press Space. The *Tab Stops* buffer is in
overwrite mode, so these changes won’t change the position of other tabs. Make sure
that you do all your editing in the first line of the display. Changes made to the other
lines won’t have any effect.

When you're satisfied with the tab stops, press C-¢ C-c to install them. If you don’t
make any changes, press C-c C-c to exit the buffer. If you make some changes and
then decide you don’t want them after all, kill the buffer by typing C-x k Enter. The
default tab stops remain in effect.

If you press C-c C-c to install them, the new tab settings affect all buffers that you
create but remain in effect for this Emacs session only.

Again, it may well appear to you that this feature doesn’t work as you would expect.
Because Emacs’s default behavior tries to align with preceding lines, changing tab
stops really affects only the first line of any buffer.

In this example, we set the first tab at column 51, pressed C-c C-c to install the tab
stops, and started a new buffer. Pressing Tab at the beginning of the buffer moves
the cursor immediately to column 51. That works fine.

Press Tab once.

/home/deb/newtabs
File Edit Options Buffers Tools Help

DExEHBES D RRE XD
Y i

7
hu(;** newtabs all (1,51} Uz L) o g

Cursor moves to column 51.

Now we press Tab a few more times, followed by Enter to move to a new line.

When we press Tab on the second line, Emacs views the newline as the only item on
the last line. Pressing Tab moves us right to the end of the line.

UsingTabs | 173

Press Tab on the next line.

/home/deb/newtabs
File Edit Options Buffers Tools Help
DExEHEBE S s OEHRRE XD
A |
]
F%:** newtabs all (2, 67T) (RS WAL ==========================—= 2|

Emacs moves to the end of the line.

As you can see, changing tab stops in this way is of limited efficacy if you’re going to
add blank lines between rows of your table or whatever you’re typing. You’d have to
work around this by adding blank lines after typing the whole table, perhaps using a
macro as described in Chapter 6.

What if You Want Literal Tabs?

Let’s say that all this tab finery is getting on your nerves. You don’t want context-
sensitive indenting; you don’t even want to change tab stops. There is a way to make
Emacs treat tabs just like a regular old typewriter did, moving over eight characters
ata time.’

To insert rigid, typewriter-style tabs, press C-q Tab. In theory, this should insert a
tab character into the file, which would look like *I. In practice, it moves the cursor
forward rigidly eight columns.

* You can’t change tab stops with this method, but you can change tab width. We’ll cover this shortly.

174 | Chapter7: Simple Text Formatting and Specialized Editing

Type: C-q Tab

/home/debjoz
File Edit Options Buffers Tools Help

DExHES s b E XD

I Lions and tigers and bears! Oh my!

|
——*+* oz all (2, 8) [QHEFs LI e g

% C-q tab

The cursor moves eight columns forward and does not align with the text in the
previous line.

C-q Tab does in fact insert a tab character in the file. You can check that by erasing it
with a single press of the Del key.

Changing Tab Width

One problem with tabs is that there is no universal definition of what a tab means. In
vi, the default tab width is four columns versus eight columns in Emacs. Further,
Unix generally favors eight columns for tabs while some operating systems tend to
use four spaces. Emacs uses eight columns by default no matter what platform it’s
running on. If you view another user’s file in Emacs, Emacs interprets the tabs as
eight columns each, throwing things off. For this reason, you might want to set your
tab default to four columns by adding this line to your .emacs file:

(setq-default tab-width 4)
You have to press C-q Tab to have the modified tab width take effect.

Tabs and Spaces

Another characteristic of Emacs’s default behavior is the fact that it may insert a
combination of tabs and spaces when you press Tab. Try to erase a few “tabs” and
you’ll see that often it isn’t one character, but the equivalent number of spaces or a
combination of tabs and spaces. Of course, this largely depends on the tab stops
compared to setting of the tab-width variable. If you set tab stops that are multiples
of six while you have a tab-width of 4 or 8, Emacs is going to have to use a combina-
tion of tabs and spaces to achieve the desired tab stops.

UsingTabs | 175

If you want Emacs to insert spaces for indentation rather than tab characters, add
this line to your .emacs file:

(setq-default indent-tabs-mode nil)

With this setting, Emacs inserts only spaces when you press Tab. Pressing C-q Tab
instead inserts a literal tab character. It’s safe to say you won’t enter tab characters
accidentally with this setting.

Changing Tabs to Spaces (and Vice Versa)

We've just talked about a way to make sure that Emacs inserts spaces instead of tabs.
But what if you inherit a file and it has tabs that you want to change to spaces?

Emacs provides a command to banish tabs from your files. You can use tabs for edit-
ing and then convert all of the tabs to the appropriate number of spaces so that the
appearance of your file doesn’t change. Unlike tabs, a space is almost always well
defined. The command for eliminating tabs is M-x untabify. There’s a correspond-
ing command to convert spaces into tabs: tabify. However, we trust that you’ll take
our advice and forget about it.

The untabify command works on a region. Therefore, to use it, you must put the
mark somewhere in the buffer (preferably at the beginning), move to some other
place in the buffer (preferably the end), and type M-x untabify Enter. The command
C-x h (for mark-whole-buffer) automatically puts the cursor at the beginning of the
buffer and the mark at the end. It makes untabification a bit easier because you can
do it all at once with the simple sequence C-x h M-x untabify Enter.

Table 7-1 shows the tab commands we’ve covered in this section.

Table 7-1. Tab commands

Keystrokes Command name Action

(none) edit-tab-stops Open a buffer called *Tab Stops* where you can change the tab settings.

(none) untabify Change all tabs into the equivalent number of spaces.

(none) tabify Change groups of three or more spaces to tabs where possible without affecting
the text placement.

Indenting Text

Emacs provides the ability to indent paragraphs, like a block quote in a paper. It also
allows you to use a paragraph style that indents just the first line of a paragraph. This
section describes indentation-related commands, including how to change the mar-
gins for the current session.

176 | Chapter7: Simple Text Formatting and Specialized Editing

Before we start, make sure you’re in text mode. Look at the mode line and, if the
word Text is displayed, you are in text mode. If not, type M-x text-mode Enter to
enter text mode.

Indenting Paragraphs

Let’s say you're writing a paper and want to include some indented block quotes.
Emacs’s default behavior makes this a no-brainer.” After you finish your first para-
graph, use tabs or spaces to indent to the desired level and start typing the quote.
Emacs automatically fills the paragraph and the quote correctly, as shown in the fol-
lowing screen.

Some indented text:

/home/deb/literaturefjames
File Edit Options Buffers Tools Help

DExEHEA B E XD

[§, My second correspondent. also a woman, sends me the following
statement:

Life seemed difficult to me at one time. I was always breaking
down, and had seweral attacks of what 1s called necwvous
prostration, with terrible insomnia. . .||

Here is another case. more concrete, also that of a woman, I read you
these cases without conment--they express so many warleties of the
state of mind we are studying.

7
- == james all (6, 46) iz, WAL == oo g

i

Emacs indents the text properly and fills it correctly in auto-fill mode.

What if an indented quote has multiple paragraphs? You could just press Enter and
then Tab again at the beginning of subsequent paragraphs or you could press C-j (for
newline-and-indent). Pressing C-j twice gives you a blank line between paragraphs.

Indenting the First Line of a Paragraph

Some people prefer paragraphs in which the first line is indented. Knowing about the
intricacies of tabs, you might be concerned that pressing Tab to indent the opening
line of your paragraph will incite Emacs to indent the whole paragraph as you con-
tinue typing. And it would, to be honest.

* Once upon a time, you had to enter indented text mode explicitly to get the behavior we describe here. Now
it is on by default in text mode.

Indenting Text | 177

Emacs provides a special mode for this purpose: paragraph indent text mode. It’s also
available as a minor mode. Enter either M-x paragraph-indent-text-mode or M-x
paragraph-ident-minor-mode respectively. If you run the major mode, Emacs dis-
plays Parindent on the mode line.

When you press Tab to start a paragraph, Emacs inserts a tab’s worth of space.
When you start a new paragraph, you don’t have to skip a line in between and press-
ing Tab to start that second paragraph yields again a tab’s worth of space, not align-
ing with the second word of the previous line as Emacs would do in text mode or
fundamental mode.

Pressing M-q reformats paragraphs without mushing them all together. If you prefer
indented paragraphs, this mode is exactly what you want. When you need to indent
a block quote, you may want to temporarily enter text mode to make it easier and
add your paragraph indentations manually.

Filling Indented Paragraphs

Let’s say you’ve got a paper with paragraphs indented at various levels. What if you
edit them and need to fill them again? Especially if there are no blank lines in
between paragraphs, M-q munges all the text into one big (nonindented) paragraph.
Instead of M-q, mark the region in question and use a special fill command: M-x fill-
individual-paragraphs. Emacs preserves each paragraph’s indentation.

Let’s contrast these two commands with an example. We’ll use our previous Henry
James example, but delete the lines between paragraphs to show what happens if
you use M-q in this case. These paragraphs need to be reformatted.

Initial state:

emacsi@localhost.localdomain
File Edit Options Buffers Tools Help

DExHE I $hE XT

Ty second correspondent, also a woman, sends me the following
statement:
Life seemed difficult to me at one time. I was always breaking down,
and had sewveral attacks of
what is called nervous prostration, with
terrihle insomnia. . .
Here is another case, more concrete, also that of a woman. I read you
these cases without comment--
they express so many varieties of the
7 state of mind we are studying.
--:** james A1l L1 (Fundamental) ———=—-=—=—==——=———————— - ————— 4

4

Some sample paragraphs from Henry James, in need of reformatting.

178 | Chapter7: Simple Text Formatting and Specialized Editing

emacsi@®localhost.localdomain
File Edit Options Buffers Tools Help

A LY -
DExEHE I $HhE XT
frr second correspondent, also = woman, sends me the following
statement: Life seemed difficult to me at one time. I was always
breaking down, and had several attacks of what is called nervous
prostration, with terrible insomnia. .. Here is another case, more
concrete, also that of a woman. I read you these cases without
comment-- they express so many varieties of the state of mind we are
studying.

7

= ** james A1l L1 (EEFEENETEEIL) Somsssmssos e soe s e e |

24

Emacs munges it all into one large paragraph.

We'll undo that command, mark the buffer as a region, and use the fill-individual-
paragraphs command.

Type: C- _ C-x h M-x fill-individual-paragraphs Enter

emacsi@®localhost.localdomain
File Edit Options Buffers Tools Help

A Y| -
DExEHE I $OhE XE
frr second correspondent, also = woman, sends me the following
statement:
Life seemed difficult to me at one time. I was always breaking
down, and had seweral attacks of what is called nerwvous
prostration, with terrible insomnia. ..
Here is another case, more concrete, also that of a woman. I read you
these cases without comment-- they express so meny varieties of the
state of mind we are studying.

7

= ** james A1l L1 e |

24

Emacs refills the paragraphs properly.

Indenting regions

What if you have already typed your text without indentation and want to indent it
later? Two commands can handle this, depending on how far you want to indent the
region.

The indent-region command, bound to C-M-\, can indent a region one level easily. If
you want to indent two levels, it is unpredictable. (This command is designed for
indenting code.)

Indenting Text | 179

Here’s an example. The second paragraph is marked as a region.

Type: C-M-\

/home/deb/literature/james
File Edit Options Buffers Tools Help

DExEHEBES « O Q8 X-

My second correspondent, also a woman, sends me the following
statement:

Life seemed difficult to me at one time. I was always bresking down,
and had seweral attacks of what is called nervous prostration, with
terrible insomnia. .. []

Here is another case, more concrete. also that of a woman. I read you

these cases without comment--they express so meany varieties of the
7 state of mind we are studying.
-—:** james A1l (6, 28) [Y Yy — — — s |
X ESC -

Emacs indents the paragraph one level.

You decide that’s not far enough.

Type: C-M-\

/home/deb/literature/james
File Edit Options Buffers Tools Help

DExEHEA S $ R RS XT
My second correspondent, also a woman, sends me the following
statenent:

Life seemed difficult to me at one time. I was always bresking down,
and had several attacks of what is called nervous prostration, with
terrible insomnia. .

Here is another case, more concrete, also that of a woman T read you
these cases without comment--they esmpress so many varieties of the
state of mind we are studying

—-:** james A1 (7.0} (Text Fill)]

Emacs creates a stairstep hanging indent.

So you can see that this works fine if you’re indenting one level. If you try this with
multiple paragraphs of different indentation levels, indent-region pulls them all to
the right, aligning them with the least indented paragraph, probably not what you
intended. If you write code, however, this command is great for cleaning up messy
indentation.

180 | Chapter7: Simple Text Formatting and Specialized Editing

The other option is to mark the region and type C-x Tab (for indent-rigidly). By
default, this command indents only one space, so if you want to indent further, you
need to give it an argument. For example, to indent the previous paragraph 15 spaces:

Mark the region then type: M-15 C-x Tab

/home/deb/literature/james
File Edit Options Buffers Tools Help

DExHEBES $ OB RE XUT

My second correspondent, also a woman, sends me the following
statement:

Life seemed difficult to me at one time. I was always bresking down,
and had several attacks of what is called nervous prostration, with
terrible insomnia. ..

Here is another case, more concrete, also that of a woman. I read you

these cases without comment--they express so many varieties of the
7 state of mind we are studying
——.*+ james all (7,0} (Text Fill) |
¥ ESC 15 C-x TAB

Emacs indents the paragraph 15 spaces.

Although arguably it can be a pain to supply an argument, indent-rigidly uniformly
indents text, leaving indented paragraphs indented. If you find yourself wanting to
indent whole files, you may actually want to change the margin settings, as described
in the next section.

Other indentation tricks

Whenever you are using indentation, you can use M-m (for back-to-indentation) to
move to the first nonblank character on a line. On a line that’s not indented, this
command simply moves you to the beginning of the line. In other words, M-m brings
you to the “logical” beginning of the line, which is what you usually mean when you
type C-a.

Another indentation command is C-M-o (for split-line). You can use this command
to create a stairstep effect. Move the cursor to the text that you want to put on the
next line and press C-M-o. Note that there must be some text following the cursor in
order for this command to work properly; if you try it at the end of a line, it does
nothing.

Indenting Text | 181

Initial state:

emacsd localhost.localdomain
File Edit Options Buffers Tools Help

DB xHE S $B8HhRE XT

It was the best of times, Pt was the worst of times

ﬁ:** dickens A1l 1.1 {Text Fill)-—-—-—-—-—-ooo——— 4

We want to split this line.

emacs®@ localhost.localdomain
File Edit Options Buffers Toals Help

DExHE $BhHRE XD

It was the hest of times,
J it was the worst of times

7
-u:** dickens All L1 {Text Fill)-----—-—m—m—mooeeo e 4

C-M-o splits the line at the cursor position.

Changing Margins

Emacs is not a word processor, but it does have a few commands that change left
and right indentation for a buffer for the current session. First, mark the whole buffer
using C-x h. You can then gchange the indention using M-x followed by one of the
following commands:

increase-left-margin
decrease-left-margin
increase-right-margin
decrease-right-margin

These commands are also available through the Edit menu. Choose Edit — Text
Properties — Indentation to see the options.

182 | Chapter7: Simple Text Formatting and Specialized Editing

Unless you supply a numeric argument using C-u or M-n preceding these com-
mands, Emacs increases or decreases the margins by the number of characters in the
variable standard-indent, which defaults to 4. If auto-fill mode is on, Emacs also
reformats the paragraphs automatically.

Margin settings remain in effect for the current session and the current buffer only.
Although the values don’t persist to another session, any text that is indented using
this method remains indented when you reopen the file. If you open the file again
and add some text, however, it is not indented; you have to set the margins again.

These commands work best in cases where you want to change the margin for the
whole buffer. If you define a smaller region, the commands work but if you type
more paragraphs, the margin settings persist whether you want them to or not.
These commands work fine if you’ve completed the file and then decide to change
the indentation.

Alternatively, you can set and save margins using enriched mode, a minor mode that
allows Emacs to save text properties, including margin settings and font changes. See
Chapter 10 for more details on enriched mode.

Using Fill Prefixes

Fill prefixes are a way of putting a certain string of characters at the beginning of
each line in a paragraph or a file. Developers will immediately think of comments as
a potential fill prefix. When writing email or newsposts, email programs often insert
a string to help readers distinguish the threads of a discussion. For those of us writ-
ing text files, fill prefixes can be used to insert whitespace in paragraphs or any rele-
vant string of characters.

The term fill prefix comes from the fact that Emacs calls word wrap auto-fill mode; in
other words, a fill prefix is a string that Emacs should insert at the beginning of each
line (or “prefix” each line with) when doing word wrap.

To use fill prefixes, it’s best to be in auto-fill mode. If your mode line says Fill on it,
you’re already in auto-fill mode. If it doesn’t, type M-x auto-fill-mode Enter.

Now let’s assume that you want to indent a letter. For the first line of the letter, type
your indentation by hand—say, eight spaces. Then type C-x . (for set-fill-prefix).
Emacs displays the message: fill prefix " " in the minibuffer. Then start typing
normally. Whenever you type past the right margin and Emacs breaks a line for you,
it automatically inserts your eight-space indentation at the beginning of the line.

Here’s a slightly more exciting example. There’s no reason that fill prefixes must to
be spaces; they can be anything you choose. Assume that you’re sending an email
message to your friends to announce a unique event and you want an eye-catching
fill prefix.

Indenting Text | 183

Type: Elephant Riding Party!!! C-x .

/home/deb/elephant
File Edit Options Buffers Tools Help

DExHES s 8ahE XD

| ELEPHANT RIDING PARTY!!!]

]
-u:** elephant 511 (1,24 L P B s b gt el =
% fill-prefix: "ELEPHANT RIDING BARTY!!!"

Type the prefix, then C-x . to set it.

Once you’ve set the prefix, you can type your message normally.

Type: The time.. . . the zoo.

/home/deb/elephant
File Edit Options Buffers Tools Help

DExHES s s XD

I ELEPHANT RIDING PARTY!!!The time for the anmual elephant riding party
ELEPHANT RIDING PARTY!!!is nearly vpon us. Plan to be at the San
ELEPHANT RIDING PARTY!!!Diego Zoo at 3:30 on Saturday, June 10. A
ELEPHANT RIDING PARTY!!!3515. 00 donation per elephant ride is
ELEPHANT RIDING PARTY!!!requested to henefit the zoo.

]
hu(;** elephant all (5,53 Uz L) s g

Emacs inserts the fill prefix at the beginning of each line of the message.

You had to type “Elephant Riding Party!!!” only once; Emacs inserted the rest auto-
matically. Here are some things you might want to know about fill prefixes:

* Emacs never applies the fill prefix to the first line of a paragraph. You obviously
can’t apply it to the first line of the first paragraph (you have to type it some-
where). But Emacs can’t apply it to the first line of any paragraph. In other words,
if the “elephant riding” message had two paragraphs, you’d have to type (or yank)
the phrase “Elephant Riding Party!!!” at the beginning of the second paragraph.

184 | Chapter7: Simple Text Formatting and Specialized Editing

However, you don’t need to set the fill prefix again. Emacs supplies your prefix
for all lines but the first in subsequent paragraphs. It just gets confused about the
initial line of any paragraph.

* Once you’ve started using a fill prefix, how do you turn it off? There’s no special
command. All you do is put the cursor at the left margin and type C-x . to define
a new, empty fill prefix.

* You can edit paragraphs with fill prefixes, then reformat them with M-q, as long as
the fill prefix is still defined. If you have cleared the fill prefix, Emacs reformats the
paragraph without regard to the fill prefix. If you need to reformat your para-
graphs later, after you’ve canceled the fill prefix, define it again and then type M-q.

Table 7-2 lists the indentation commands we’ve discussed.

Table 7-2. Indentation commands

Keystrokes
Gj

(none)

(none)
(none)
(-xTab

M-\
M-m

C-M-o0

(none)
Edit — Text Properties —
Indentation — Indent More

(none)
Edit — Text Properties —
Indentation — Indent Less

(none)
Edit — Text Properties —
ndentation — Indent Right More

(none)
Edit — Text Properties —
Indentation — Indent Left More

Cx.

Command name
newline-and-indent

paragraph-indent-text-mode

paragraph-indent-minor-mode
fill-individual-paragraphs
indent-rigidly

indent-region
back-to-indentation

split-line

increase-left-margin

decrease-left-margin

decrease-right-margin

increase-right-margin

set-fill-prefix

Action

Move to the next line and indent to the current
level.

A major mode for writing paragraphs with
indented first lines and no blank lines between
paragraphs.

The minor mode equivalent of paragraph-indent-
text mode.

Reformat indented paragraphs, preserving inden-
tation.

Indent one column; preface with C-u or M-n to
specify multiple columns.

Indent a region to match the first line in the region.

Move the cursor to the first non-whitespace charac-
teronaline.

Split the line at the cursor position and indent it to
the column of the cursor position.

Increase the left indentation level for the buffer by
four characters by default.

Decrease the left indentation level for the buffer by
four characters by default.

Decrease the right indentation level for the buffer
by four characters by default.

Increase the right indentation level for the buffer
by four characters by default.

Use the information up to the cursor column as a
prefix to each line of the paragraph; typing this
command in column 1 cancels the fill prefix.

IndentingText | 185

Centering Text

Another common formatting task is centering text. For example, you might want to
center the title of a document or individual headings within a document. Emacs pro-

vides commands to center lines, paragraphs, and regions.

In text mode, you can center a line by simply typing the line you want to center (or
moving anywhere on an existing line), and then pressing M-s.

Type: Annual Report

| v /home/deb/annualreport - 00X
File Edit Options Buffers Tools Help
A 3 e
DExHE S § 6BhRRE XY
tnnual Report]]
1 ammualrep 11 {1,13) 4 i11) 4
= 3% reporkt Iy P T e e
You type the document’s title.
Type: M-s
[l /home/deb/annualreport - X
File Edit Options Buffers Tools Help
DExHE S § 8D RRE XD
Arrmal Reportl]
7
-u:*+ amnmalreport A11 (1,41 g L o sl et At oA 5|
i 3

Emacs centers the line.

You can also center paragraphs and regions. In both cases, Emacs does line-by-line
centering rather than block centering. To center a paragraph, use the command M-S
(for center-paragraph); to center a region, use M-x center-region. For example, let’s
say you want to center the following quotation.

186 | Chapter7: Simple Text Formatting and Specialized Editing

/home/deb/centerediale
File Edit Options Buffers Tools Help

DExHE S $ 0D E XT

[] It was the hest of times,
it was the worst of times,
it was the age of wisdom,

it was the age of foolishness,
it was the epoch of helief,
it was the epoch of incredulity .

7
--:** centeredtale Top (1,0} {Text Fill)-—-—-—-————— - ——— 3

I

Text is now centered.

In this case, line-by-line centering looks rather artistic. But there are times when you
might wish Emacs did block centering. You can replicate this effect by using the
indent-rigidly command, discussed earlier in this chapter. You just have to play with
the indentation to see how far the block of text should be indented to look centered.

There’s one more choice for centering. You can change justification by choosing
Edit - Text Properties — Justification — Center. This command works on what-
ever text is selected.

Table 7-3 lists the commands used to center text.

Table 7-3. Centering commands

Keystrokes Command name Action

M-s center-line Center the line the cursor is on.

M-S center-paragraph Center the paragraph the cursor is on.
(none) center-region Center the currently defined region.
(none) set-justification-center Center selected text.

Edit — Text Properties —
Justification — Center

Using Outline Mode

When you’re writing something, whether it’s a book, a long paper, or a technical
specification, getting a sense of organization as you go along is frequently difficult.
Without a sense of structure, it is hard to expand an outline smoothly into a longer
paper or to reorganize a paper as you go along. The words get in the way of your
headings, making it hard to see the forest for the trees.

Outline mode provides a built-in solution to this problem. This mode gives you the
ability to hide or display text selectively, based on its relationship to the structure

Using Outline Mode | 187

of your document. For example, you can hide all of your document’s text except
for its headings, thereby giving you a feel for the document’s shape. When you’re
looking at the headings, you can focus on structure without being concerned about
individual paragraphs. When you’ve solved your structural problems, you can
make the text reappear.

Outline mode is more useful for documents with several levels of headings (or for
long programs) than for plain outlines containing very little text. The longer a
document is, the harder it is to get a quick feel for the overall structure; it is in
such a situation that outline mode’s ability to hide and show portions of the text
comes in handy.

Outline mode requires you to follow some special conventions in your outline or
document. Figure 7-1 shows an outline in traditional format and the same outline
prepared for outline mode. On the left, we show a “traditional” outline; on the right,
we show the same outline, after being prepared for outline mode:

Traditional outline Outline mode
Allabout the Universe Allabout the Universe
|.Preface *Preface
A.Scope of book **Scope of book
This book is all-inclusive This book is all-inclusive
B.Intended audience **Intended audience
Universe dwellers Universe dwellers
II.Chapter 1 *Chapter 1
A.Universe basics **Universe basics

Figure 7-1. Traditional Outline versus Outline Mode

Whereas traditional outlines use a hierarchical scheme of Roman numerals, upper-
case letters, numbers, and lowercase letters for heading levels 1 through 4, outline
mode by default expects to see one asterisk (*) for a first-level heading, two for a sec-
ond-level heading, and so on. Lines that don’t start with an *, such as “This book is
all-inclusive,” are referred to as body lines. Notice that Emacs expects to see the
asterisk in the first column. You can use traditional outline indentation, provided
that the asterisks start in the first column.”

* Of course, after the document is complete, you’ll want to remove the asterisks. You can use a query-replace to
change the asterisk-style headers into headers that are appropriate for your preferred formatting style. Find the
lowest-level heading and do its replacement first. If you have third-level headings, replace all occurrences of ***
with the mark-up for a third-level heading, then move on to second-level headings, and finally first-level head-
ings. Be careful on first-level headings, though; there may well be asterisks in the file that are unrelated to head-
ings; preface the asterisk with C-q C+j to ensure that you get an asterisk that starts on a new line. Another
approach is to use Eric Pement’s awk scripts. The script at hitp://www.student.northpark.edu/pemente/awk/
outline_classic11.awk.txt converts an outline mode outline to a classic outline while the script at hitp://www.
student.northpark.edu/pemente/awk/outline_numberedl1.awk.txt converts to a numbered outline.

188 | Chapter7: Simple Text Formatting and Specialized Editing

The sample outline has only two body lines. As we developed the book, though,
we’d gradually add more and more body: “This book is all-inclusive” would be
replaced by a substantial chunk of the preface, and other body lines later in the out-
line would turn into the text for Chapter 1. When used properly, outline mode
removes the distinction between outlining and writing. As your outline grows and
becomes more detailed, it can gradually become your paper.

Entering Outline Mode

To start outline mode, type M-x outline-mode Enter. Outline appears on the mode
line. (Outline mode is also available as a minor mode; we’ll discuss that later in
this section.)

After you are in outline mode, you can use special commands to move quickly from
one part of the outline to another. C-c C-n moves to the next heading or subheading;
C-c C-p moves to the previous one. C-¢ C-f moves to the next heading of the same
level, so you can use this command to move from one first-level heading to another
throughout the outline, or from one second-level heading to another within a given
entry. C-c C-b moves backward to the previous heading of the same level. If you want
to move from a second-level heading to its first-level heading, up a level in the outline
structure, you type C-c C-u. (If you are on a first-level heading already, C-c C-u beeps
because it can’t move to a higher level.) Figure 7-2 illustrates how these cursor com-
mands would work on our sample outline.

All about the Universe
*Preface«

s **kScope of the Book s N
Gtﬁﬁ This book is all inclusive E

Universe dwellers

e *Chapter 1«
N . . ;
S XUniverse basics e ‘

Figure 7-2. Moving around in outline mode

These commands make it easy to solve a lot of organizational problems. If you often
think, “I know I'm writing about widgets, but I can’t remember the bigger point 'm
trying to make,” type C-c C-u to get to the next higher level of the outline. If you
want to figure out how widgets relate to the other topics within the section, use C-c
C-b and C-c C-f to move backward and forward to your other headings.

Using Outline Mode | 189

Hiding and Showing Text

The most important feature of outline mode is the ability to selectively hide or show
different portions of your text. The ability to see a skeletal view of a long document
with outline mode is its best feature; it’s much easier to evaluate the structure of a
document when you can hide everything but the headings and see whether it is
coherent or in need of some reorganization.

Although it sounds like something out of a detective novel, the hide-body com-
mand, C-c C-t, hides all the body (or text) lines but leaves all the headings (lines that
begin with an asterisk) visible. Wherever Emacs hides text, it places an ellipsis (...)
on the corresponding heading line. The ellipsis tells you that some hidden text is
present. The buffer itself is not modified; you’ll notice, if you watch the left side of
the mode line, that the asterisks that indicate a modified buffer don’t appear. If you
save a file and exit while some text is hidden, Emacs saves the hidden text along with
what you see displayed; hiding text in no way implies losing text. The next time you
read the file, Emacs shows all text that was hidden.

Using the hide-body command is a good way to get a feel for the structure of a long
document. You can then type C-c C-t and see only the headings without the text. For
example, let’s start with the simple outline we gave above and hide the body.

Type: C-c C-t

/home/deb/universe
File Edit Options Buffers Tools Headings Show Hide Help

DEx HES $ 0 RE X-

Brreface

**+Scope of This Book. ..
*+Tntended Audience. . .
*Chapter 1

*#+niverse Basics

7
-1:-- Universe 211 (2, 0) {Outline Fill)----———————- 4

T

The body is hidden; ellipses show us where body lines are.

To show all the hidden text in a file, whether headings or body, type C-c C-a (for
show-all). These commands, hide-body and show-all, work on the outline as a
whole. A command similar to hide-body is hide-sublevels, C-c C-q. This command
shows only first-level headers, giving you a feel for the major sections in the docu-
ment you're working on.

190 | Chapter7: Simple Text Formatting and Specialized Editing

Type: C-cC-q

/home/deb/universe

File Edit Options Buffers Tools Headings Show Hide Help
DExHE s $BDHRE XT
H?feface. .
*Chapter 1. ..
7
-1:-- wmiverse All (2, {0utline Fill)----—-—-————-—- ol

E C-c C-q

Only first-level headers appear.

Editing While Text Is Hidden

Now that you know how to hide and show text, let’s discuss some of the properties
of hidden text. Editing a document while some of it is hidden is often useful—it’s a
great way to make major changes in document structure—but there are some dan-
gers that you should be aware of. Let’s say you’ve hidden all text with outline mode
and only the headings are showing, giving you a true “outline” of your document. If
you move a heading that has hidden text and headings associated with it, everything
that is hidden moves when you move the visible text. Later, when you “show” all of
the document, the hidden text appears in its new location—underneath the heading
that you moved. Similarly, if you delete a heading, you delete all hidden text as well.

This feature makes moving blocks of text easy. However, there are some things to
watch out for. If you delete the ellipsis following an entry, Emacs deletes the hidden
information as well. To its credit, Emacs tries to keep you from doing this; it does
not allow you to delete the ellipsis using the Del key or using normal cursor com-
mands like C-b to move the cursor onto it. However, if you're persistent you can
delete the ellipses (and the text it represents) using, for example, C-k. If you do so,
Emacs deletes the hidden text. Typing C-y yanks the hidden text that you killed
when you deleted the ellipsis; the undo command, C-_, restores the ellipsis. Our
advice is to display text before deleting it so you can see what you’re doing. On the
other hand, when you are moving sections of an outline around, it is helpful to do
sowhile text is hidden so you can keep the structure in mind.

Be careful when moving hidden text to a buffer that’s not in outline mode. Let’s say
that your outline ends with a heading followed by an ellipsis. When marking that
section to move to another buffer, make sure the region includes the newline follow-

Using Outline Mode | 191

ing the ellipsis (for example, move to the beginning of the next line). If you simply
place the cursor following the ellipsis, Emacs copies only the header, not the hidden
text. We're not sure why. Moving past the newline copies the body as well as the
heading correctly, and pasting it into a buffer in text mode shows all the hidden text.

Marking Sections of the Outline

When you’re moving text around, it’s convenient to be able to mark a section of the
outline and then move it or promote or demote it a level, as we’ll discuss next. To
mark a section of the outline (the current heading and its children), type C-c @ (for
outline-mark-subtree). You can then cut or paste the section you’ve marked. You
might want to type C-x C-x to verify that the region is marked correctly.

Promoting and Demoting Sections

Often as you’re writing, you find that a certain heading should really be promoted or
demoted a level. To promote a heading, type C-c C-*. To demote it a level, C-c C-v.
(Note the clever attempt to make the key bindings indicate that you’re moving head-
ings up or down a level using » and v.) This automatically changes the markings for
the heading in question. In other words, promoting a second-level heading removes
an asterisk, making it a first-level heading. You’ll find the commands to move to the
next and previous headings, C-c C-n and C-c C-p, helpful when you are promoting
and demoting sections.

But what if you want to demote not just a heading but a subtree? Or even the
entire outline? At the moment, you’d have to write a Lisp function to do that (or
use someone else’s). Several functions like this have been written by gurus and
posted online, but none are part of Emacs at this writing. We hope this function is
incorporated soon.

Using Outline Minor Mode

Outline mode is also available as a minor mode so that you can use it subordi-
nately to your favorite major mode. To start outline mode as a minor mode, type
M-x outline-minor-mode; Outl appears on the mode line. In some ways, this mode
is less convenient; rather than the simple C-c prefix you use for most outline mode
commands, in outline minor mode, you must preface all commands with C-c @
instead, to avoid interfering with the usual C-c commands of the major mode. So,
if you want to move down to the next heading (the C-c C-n command in outline
mode), you would type C-c @ C-n instead.

Please note that mixing outline major mode and outline minor mode is not only redun-
dant but can be dangerous. Turning on the minor mode while the major mode is on
can confuse Emacs. Exit outline mode, then enter outline minor mode if you wish.

192 | Chapter7: Simple Text Formatting and Specialized Editing

Table 7-4 summarizes outline mode commands. In the next section, we discuss
another specialized editing method: editing with rectangles.

Table 7-4. Outline mode commands

Keystrokes Command name Action

(none) outline-mode Toggle outline mode.

CcCn outline-next-visible-heading Move to the next heading.

Headings — Next

CcCp outline-previous-visible-heading Move to the previous heading.

Headings — Previous

CcCf outline-forward-same-level Move to the next heading of the same level.
Headings —

Next Same Level

CcCh outline-backward-same-level Move to the previous heading of same level.
Headings —

Previous Same Level

CcCu outline-up-heading Move up one heading level.

Headings — Up

CGcCt hide-body Hide all body lines.

Hide — Hide Body

CcCa show-all Show everything that’s hidden.

Show — Show All

CcCq hide-sublevels Display first level headers only.

Hide — Hide Sublevels

CcCo hide-other Hide all text and headings outside the current sub-
Hide — Hide Other tree. First level headers show.

CGc@ outline-mark-subtree Mark the current header and all sublevels.

CGcCA outline-promote Promote the current heading one level.

CGcCv outline-demote Demote the current heading one level.

CcCd hide-subtree Hide subheads and body associated with a given
Hide — Hide Subtree heading.

CcCc hide-entry Hide the body associated with a particular heading
Hide — Hide Entry (not subheads and their bodies).

CcCl hide-leaves Hide the body of a particular heading and the bodies
Hide — Hide Leaves of all its subheads.

C-cCs show-subtree Show the subheads and text associated with a given
Show — Show Subtree heading.

CcCe show-entry Show the body associated with a particular heading
Show — Show Entry (not subheads and their bodies).

CGcCk show-branches Show the body of a heading and bodies of all its sub-
Show — Show Branches heads.

C-cTab show-children Show the next level of subheads associated with a
Show — Show Children particular heading (none of body text).

Using Outline Mode | 193

Rectangle Editing

When you mark regions to move or delete, they always cover the full width of the
window. Editing by region is fine for most of the work that you do in Emacs. But
what if you wanted to edit a table? Regions cover the full width of the window, so
they can’t handle columns. Emacs offers another way to define areas to delete, copy,
and move around: using rectangles. Rectangles are just what they sound like: rectan-
gular areas that you define and manipulate using special rectangle editing com-
mands. Editing with rectangles is useful whenever you want to move or delete
vertical columns of information; for instance, moving a column of a table or rear-
ranging fields in a dataset.

For example, let’s say you want to edit the following table, moving the “Hours” col-
umn to the right side. There’s no way to do this using regions, but it’s easy to do if
you learn some rectangle editing commands.

Initial state:

home/deb/flextime

File Edit Options Buffers Tools Help
— A 5 = s
OEx B BB EXT
Schedule

Name Hours Email Cell

Fred T.30-4:30 fredicom. org 703-812-7837

0livia 9:00-6:00 oliviaBooncast. net 240-994-0734

Neicole 10:00-7:00 rmcRadelie. com TT0-3TE-T8TE
: Alvin 6:00-3:00 chipmunk@jawa. com 410-782-7231
-—:—- flextime a1l (3, 15} S s e S et S e i T S |
4

A flextime schedule.

You define a rectangle the same way you define a region; the commands you use
after marking the area tell Emacs whether you want to work with a region or a rect-
angle. (This is a good time to let go of your mouse and use keyboard commands for
marking the text. Highlighting remains horizontal when you’re working with rectan-
gles and will only confuse you as you begin to think rectangularly. Of course, there’s
nothing wrong with using the mouse to move the cursor quickly; just don’t use it to
highlight text.)

Before we start working with these columns, select the buffer with C-x h and untab-
ify it by typing M-x untabify. Rectangle editing works best with files that do not con-
tain tab characters.

To define a rectangle, move the cursor to the upper-left corner and set the mark by
pressing C-Space, then move the cursor to the lower-right corner of the rectangle.

194 | Chapter7: Simple Text Formatting and Specialized Editing

Once you’re at the lower-right corner of the rectangle, move one character farther.
Why move one character farther? Remember that when you define a region, the
character that the cursor is on isn’t part of the region. (The character that the mark is
on is part of the region.)

Let’s define a rectangle that covers the second column of our table.

Move to the H in Hours and type C-Space

[home/deb/flextime

File Edit Options Buffers Tools Help
= A =l =l (&)
DB xHE S B EXT
Schedule

Wane Hours Email cell

Fred T:30-4:30 fred@cem. org T03-812-7837

0livia Q.00-6:00 oliviaBoomcast. net 240-9394-0784

Neicole 10:00-7:00 rmcRadelie. com TT0-3TE-T878
7 Alwin £:00-3:00 chipnonk®gasa. con 410-782-T7231
--.-- flextime &1l (3,15} (Text Fill)-—--=-—————mmmmmmmmmmmmm oo 9
¥ HMark set

The mark is set at the upper-left corner of the rectangle to be moved.

Move the cursor to the space following the bottom-right corner of the rectangle, the
¢ in chipmunk.

[home/deb/flextime

File Edit Options Buffers Tools Help
— = 5 = —
DB xHE S B EXT
Schedule

Hame Hours Email Cell

Fred T:30-4:30 fred@cem. org T03-812-7837

0livia Q.00-6:00 oliviaBoomcast. net 240-9394-0784

Neicole 10:00-7:00 rmcRadelie. com TT0-3TE-T878
7 Alwin £:00-3:00 Bhipmurk@iawa. con 410-782-T7231
--.-- flextime a1l {8, 33) (Text Fill)-—--==—————mmmm oo mmmm oo 9
4

The cursor follows the bottom-right corner of the rectangle.

Now that the rectangle is marked, we want to delete it and then move it. The command
to delete a rectangle so you can retrieve it elsewhere is C-x r k (for kill-rectangle).

Rectangle Editing | 195

Type: C-xrk

[home/deb/flextime
File Edit Options Buffers Tools Help

DExHE I § OB RQE XT

Schedule
Name Email Cell
Fred fredicem. org 703-812-7837
0livia oliviaBocomcast. net 240-994-0784
Neicole rmciadelie. com TT0-372-T878
: Alvin Bhipmunk@java. con 410-782-7231
-—.*+ flextime &1l (8, 15} {Text Fill)-——--—-——-—ooom oo 5|

¥ Loading rect... done

The rectangle is deleted; it’s in a special rectangle kill buffer.

Once again, when you mark a rectangle, you put the cursor on the upper-left corner,
set the mark, then move to the lower-right corner of the rectangle and over one more
space. Emacs expects rectangles to be rectangles. If necessary, it pads an area with
spaces to make up the straight line on the right side.

You can move anywhere on the screen and reinsert the rectangle last killed with the
yank-rectangle command, C-x r y. To put the “Hours” column on the right side of
the table, we move the cursor following the cell phone column.

Place the cursor following Cell and press M-10 Space to move to a good location to
paste the “Hours” column:

[home/deb/flextime
File Edit Options Buffers Tools Help

DExHE S s 0D RE XT

Schedule
Name Email cell []
Fred fredioom. org T03-912-7837
0livia oliviaBcomcast. net 240-994-0784
Neicole rmcRadelie. com TT0-372-7878
Alwin chipmunk@yaws, com 410-T782-7221
-—:*+ flextime &1l (3,52} (Text Fill)-——--—-——m—mmmmm oo o

it

Move the cursor to where we want to reinsert the rectangle.

196 | Chapter7: Simple Text Formatting and Specialized Editing

Type: Cxry

[home/deb/flextime
File Edit Options Buffers Tools Help
T 5] =l o
DExHdBE S $8HRQE XE
Schedule
Name Email Cell Hours
Fred fredicem. org 703-812-7837 T.30-4:30
0livia oliviaBocomcast. net 240-994-0784 9.00-6:00
Neicole rmciadelie. com TT0-372-T878 10:00-7:00
: Alvin chipmurk@java. con 410-782-7231 6:00-3:00 []
-—.*+ flextime &1l (g8, 70} {Text Fill)-——--—-—co—ooomom oo 5|
¥ Mark set

Emacs inserts the rectangle we killed earlier.

Emacs inserts the rectangle exactly where you tell it to. We moved past the cell
phone column and then added some space between the cell phone and hours col-
umns. Otherwise, Emacs would have blithely inserted the hours column into the
middle of the cell phone column. Note that there’s no equivalent of the kill ring for
rectangles. You can yank only the most recent rectangle.”

Killing and yanking rectangles requires practice. Once you get the hang of the proce-
dure, it is an easy way to edit tables and other column-dependent material.

A few other commands create blank rectangles. For example, let’s say we want to put
four more spaces between the cell phone and hours columns. To do this, we set the
mark, move to the bottom of the column, move forward four spaces, then type C-x r o
(for open-rectangle). This command inserts a blank rectangle and pushes the remain-
ing text to the right.

* You can, however, store rectangles in registers, providing the effective equivalent of the kill ring. More on
this shortly.

Rectangle Editing | 197

Move the cursor to the H in Hours and type C-Space

[home/deb/flextime

File Edit Options Buffers Tools Help
=4 =51 =] o w
DExHE I $ OB RQE XT
Schedule
Name Email Cell Hours
Fred fredicem. org 703-812-7837 T.30-4:30
Olivia oliviaBocomoast. net 240-994-0724 9.00-6.00
Neicole nmc@adelie. com TT0-372-7878 10.00-7:00
: Alvin chipmurk@java. con 410-782-7231 6:00-3:00
-—:** flextime a1l (3, 52} L i i B Bt et it e A bk g
¥ Mark set

Emacs sets the mark at the upper-left corner of the rectangle.

Now we need to define the amount of space we want to insert. Move down to the
bottom of the rectangle (the “Alvin” line) and then move to the hyphen between 6:00
and 3:00.

Move the cursor following 6:00.

emacsilocalhost.localdomain
File Edit Options Buffers Tools Help
— e = e
OExHE S $ B8 XE
Schedule
Hame Email cell Hours
Fred frediccm. org T03-812-7837 T7:30-4:30
0livia oliviacomcast. net 240-994-0784 9:00-6:00
Neicole rmc@adelie. com 770-372-7878 10:00-7:00
4 Alvin chipmurk@jasva. com 410-782-7231 &.00@=.00
-—:** flextime all L8 (Text Fill) |
4

The lower right corner of the rectangle is defined.

Finally, type C-x r o to add the new space to the table.

198 | Chapter7: Simple Text Formatting and Specialized Editing

Type Cxro

[home/deb/flextime

File Edit Options Buffers Tools Help
—a 5 = s
DExEHEBE S $ BB E8 X
Schedule

Name Email Cell § Hours

Fred fredicem. org 703-812-7837 7:30-4:30

0livia oliviaBcomcast. net 240-994-0784 9:00-6:00

Neicole rmciadelie. com TT0-372-T878 10:00-T7:00
: Alvin chipmurk@java. con 410-782-7231 6:00-3:00
-—:** flextime a1l (3, 52} L ek e b At |
4

Emacs inserts a blank rectangle that is four spaces wide. It moves the rest of the table
to the right.

The clear-rectangle command wipes out text, leaving a blank rectangle in its place.
It’s just as though you had erased a column on a blackboard. Like the blackboard
column, the text column that is wiped out is gone, not stored in the rectangle kill
buffer. To continue with our example, let’s say that after reviewing the schedule, all
those involved agreed that they’d rather not have their cell phones listed.

Move the cursor to the C in Cell and type C-space.

[home/deb/flextime
File Edit Options Buffers Tools Help
= = 5 = —
DExHE Y x B HhRE XD
Schedule
Name Email Eell Hours
Fred fredioom. org T03-912-7837 7:30-4:30
0livia oliviaBcomcast. net 240-994-0784 9.00-6:00
Neicole rmcRadelie. com TT0-372-7878 10:00-7:00
7 Alwin chipmunk@yaws, com 410-T782-7221 £:00-3:00
-—: %+ flextime &1l (3, 38) (Text Fill)-——--—-——m—ommmm oo 5|
% Mark set

The upper-left corner of the rectangle to be cleared is marked.

Rectangle Editing

199

Move to the space following the last phone number and type: C-xr ¢

[home/deb/flextime

File Edit Options Buffers Tools Help
—a 5 = —
DExHdE S $ BhE XG
Schedule
Name Email Hours
Fred fredicem. org 7:30-4:30
0livia oliviaBocomcast. net 9.00-6:00
Neicole rmciadelie. com 10:00-T7:00
' Alvin chipmnk@java. con [] £:00-3:00
-—.*+ flextime &1l (8, 38) {Text Fill)-——--—-—co—oooom oo 5|
4

The clear-rectangle command removes the “Cell Phone” column and leaves a blank
space in its place.

As you can see, the spacing of our table still isn’t perfect; you’d probably want to use
the delete-rectangle command” to delete the extra space between the second and the
third columns. To delete the blank space without storing it, start by moving the cursor
to the space following the longest email address and press C-Space to set the mark,
then move to the opposite corner of the box you want to delete and type C-x r d.

On the header line, move to the column after the longest email address and press
C-Space

[home/deb/flextime

File Edit Cptions Buffers Tools Help
— 5 = —m
DExHdE Y K B HRE XD
Schedule
Name Email [] Hours
Fred fredioom. org 7:30-4:30
0livia oliviaBcomcast. net 9.00-6:00
Neicole rmcRadelie. com 10:00-7:00
7 Alwin chipmunk@®yaws. com 6:00-3:00
-—:** flextime &1l (3, 33) D T e |
% Mark set

The upper-left corner of the rectangle to be deleted is marked.

* Like all Emacs delete commands, delete-rectangle doesn’t store what you delete in the kill ring.

200 | Chapter7: Simple Text Formatting and Specialized Editing

Move a few spaces before 6:00 on the last line and type C-xrd

[home/deb/flextime
File Edit Options Buffers Tools Help

DExHE I $OBHRQE XT

Hame

Fred

Alwin

7

0livia
Neicole

——:** flextime

Schedule

Email

fredicem. org
oliviaBocomcast. net
rmciadelie. com

chipmmnk@java. con i

all (8, 33)

Hours

T:30-4:30
9:00-6:00
10:00-7.00
6:00-3:00

PSLILL) === 5

kg

The delete-rectangle command deletes the blank space.

If you’re doing some really fancy table editing, being able to store several rectangles
is helpful. That way, you can have every column as a rectangle, as well as having a
rectangle for the exact amount of blank space to put between each column. You can
store rectangles in registers by typing C-x r r r where r is any alphanumeric charac-
ter, including punctuation. To insert a rectangle you’ve stored, type C-x r i r. Regis-
ters don’t persist between sessions.

Table 7-5 lists rectangle commands.

Table 7-5. Rectangle commands

Keystrokes
Cxrk
Cxrd
Cxry

Cxrc

Cxro

Cxrrr
Cxrir
(none)

Cxrtstring Enter

(none)

Command name
kill-rectangle
delete-rectangle
yank-rectangle
clear-rectangle

open-rectangle
copy-rectangle-to-register

insert-register
delete-whitespace-rectangle

string-rectangle

string-insert-rectangle

Action

Delete a rectangle and store it.
Delete a rectangle and do not store it.
Insert the last rectangle killed.

Using spaces, blank out the area marked as a
rectangle and do not store it.

Insert a blank rectangle in the area marked.

Copy rectangle to register r (where r is any
character) .

Insert rectangle from register r (where r is any
character).

If a rectangle includes initial whitespace,
deletes it, narrowing rectangle.

Change contents of marked rectangle to
string (if string is narrower or wider than
rectangle, dimensions change accordingly).

Prompts for string and inserts rectangle.

Rectangle Editing

201

CUA Rectangle Editing

If you are familiar with CUA mode, which is part of Emacs starting with 21.3.5, you
may know that it provides cut and paste key sequences familiar to Windows users, as
in C-x to cut and C-v to paste (see Chapter 13). The second most commonly touted
feature of CUA mode is its superior rectangle support.

We’ve just looked at a myriad of rectangle commands. CUA’s rectangle support is far
simpler. By learning essentially one command, you can cut and paste rectangles in
CUA mode.

Unfortunately at present, CUA mode support is standard but not nuanced on Emacs 21.
3.5. You either take the whole enchilada or you don’t. To turn it on, select C-x/C-c/C-v
cut and paste (CUA) from the Options menu. If you don’t generally like to use the CUA
keybindings for cut and paste, you might turn this option on only when you are doing
rectangle editing.

To select a rectangle, type Shift-Enter. Emacs starts to highlight in a dark pink color
by default. You extend the highlighting with normal cursor movement keys (the
mouse does not work at present).

Move to the Cin Cell and type: Shift-Enter

¥ emacs@FREAWARU =Jokd

File Edit Options Buffers Tools Help

D xEBE s ¥8HQAE XY

Schedule =
Name Hours Email Iell
Fred F:30-4:30 frediccm. org 703-81z2-7837
Olivia S:00-6:00 oliviafcomzast . net 240-994-0754
Neicole 10:00-7:00 mncfadelie. com TY0-3VZ-787VE
Alwin 6:00-3:00 chipmunkl java.com 410-782-7231

——%—— flextime All L3 [Fundamental) ————- ————
C-?:help M-p:pad M-o:open M-c:close M-b:blank M-s:string M-f:fill M-i:@
Eincr M-n:seq

|<|> |4 |

The upper-left corner of our rectangle is marked (Windows).

202 | Chapter7: Simple Text Formatting and Spedialized Editing

The minibuffer displays an array of CUA mode rectangle commands. For now, we’ll
just mark the rectangle and experiment with one of these commands momentarily.

Move the cursor to the last number in Alvin’s phone number.

e
¥ emacs@FREAWARU =3}
Fil= Edit Options Buffers Tools Help
4 Bty
R= 9 ¥ & XE
Gchedule =
Name Hours Email Ce]|
Fred 7:30-4:30 fredicem. org
Qlivia 2:00-6:00 oliviafcomcast . net
HNeicole 10:00-7:00 mmcfiadelie. com
Llvin 6:00-3:00 chipmunkl java. com
=
—=%—— flextime All LE [Fundamental) - ———- ————

The rectangle is marked (Windows).

Note that the marked rectangle isn’t strictly rectangular in shape. The phone num-
bers form a true rectangle, but in order to create a rectangle that includes the col-
umn header, we need to ask CUA mode to “pad” the rectangle using M-p, one of the
commands listed in the minibuffer earlier.

Type: M-p
¥ emacs@FREAWARU =[]
File Edit Options Buffers Tools Help
Z PR &
s
DExEHEBE S TBHREXT
Schedule =
ame Hours Email
Fred T7:30-4:30 frediccm. org
Olivia S:00-6:00 oliviafcomzast . net
Neicole 10:00-7:00 mncfadelie. com
Alwin 6:00-3:00 chipmunkl java.com
=~
——4** flextime All LB [Fundamental) ————— ===
Undo ! —|

The pad command makes this a true rectangle (Windows).

Rectangle Editing

203

We can now cut or paste the rectangle using C-x or C-v respectively. This is just a
taste of the CUA mode rectangle commands. You can explore more of them on
your own. We thought you should be aware of this method as an alternative to the
more keyboard-intensive rectangle commands that have been part of Emacs for
many years.

Making Simple Drawings

Emacs is not, by any means, a graphics package, but it does provide some limited
drawing capabilities. Emacs includes a picture mode that allows you to draw simple
pictures using keyboard characters; it also includes artist mode, which enables you to
draw quickly using the mouse.

Why would you want to draw with Emacs? Well, Emacs is useful for inserting a
quick drawing or diagram in a mail message, something that most graphics packages
can’t do. It’s also good for making block diagrams, timing diagrams (for electrical
engineers), timelines, and other simple drawings.

Don’t overlook this simple facility! We have seen many papers that were carefully
formatted with a simple star-and-bar diagram dropped in the middle. Sure, you can
use a graphics package to create a much nicer drawing, but if that’s not your area of
expertise, an Emacs ASCII drawing might be just the ticket.” We discuss picture
mode first and then artist mode.

Picture mode turns the area being edited into a kind of drawing board consisting of
columns and rows. In picture mode, you can create simple pictures (such as the one
in Figure 7-3) using keyboard characters without having them “rearranged” by the
word-wrap capabilities of auto-fill mode, for example.

To enter picture mode, type M-x edit-picture. The word Picture appears on the
mode line, followed by the default drawing direction (more on that shortly). Typ-
ing C-c C-c exits picture mode and returns you to whatever major mode you were
in before.

Drawing in Picture Mode

In picture mode, you can “draw” with any character in any of eight directions.
Although you can draw in eight directions, only one direction is available at a time;
this direction is referred to as the default direction. When you first enter picture
mode, the default direction is right, meaning that if you press the hyphen key four

* A number of online groups are dedicated to ASCII art. Of course, all such art requires that you use a mono-
space font for proper viewing. Newsgroups such as alt.ascii.art and web sites such as the Ascii Art Dictionary
(http://www.ascii-art.de/) provide a good introduction.

204 | Chapter7: Simple Text Formatting and Specialized Editing

fhome/deb/drawing
File Edit Options Buffers Tools Help
— _,;’ e
DExEHE S $ 8D RE XT
/1
Il
AT
£
T
* s hA
i hA
£ !
| |
| |
| =1 |
I I
—_— | | _______
-u:** drawing 211 (1,56} (Picture:down Owwrt Fill)-4
T
Figure 7-3. Drawing in picture mode
times, you would draw a line to the right, as follows: ----. The default direction is dis-

played on the mode line, like this:
(Picture: right)

By typing special commands that change the default direction, you can draw in seven
other directions as well. For example, C-c \ makes the default direction “southeast;”
the mode line would then read (Picture: se). If you typed four hyphens in this direc-
tion, they would look like stair steps:

Figure 7-4 illustrates the commands for setting various directions as the default in
picture mode.

Picture mode tries to make these commands easy to remember, and it doesn’t do too
badly: for example, C-c » points upward, C-c-" arguably points to the northwest, and
so on. If you can come up with a good mnemonic device for C-c . let us know!
Maybe you can think of it as “dot for down.”

After you set a default direction, pressing any character repeatedly draws a line of
characters in that direction. Give it a try in a scratch buffer, using the commands in
the figure to change the default direction. Try drawing a box.”

Making Simple Drawings | 205

CcA

Cc>

Figure 7-4. Moving around in picture mode
Type: M-x picture-mode

/home/deb/boxey

H Type CG-c G-c 1n this buffer to return it to Text mode.

Putting the buffer into picture mode, default direction “right.”

* Other commands can accomplish this task more quickly, but bear with us for the sake of a simple example.
For example, this little exercise could be accomplished with a single mouse drag in artist mode. Picture mode
also offers a quick command for drawing a rectangle, C-c C-r.

206 | Chapter7: Simple Text Formatting and Specialized Editing

Type: Tab M-20 -

b 'd 'home/deb/boxey

Emacs draws a line to the right. Next, we’ll change the default direction to down,
and use | for the right side of the square.

Type: C-c. M-5 |

b d 'home/deb/boxey

Emacs draws a line down. Now we’ll set the default direction to “left,” then draw the
bottom of the square.

Making Simple Drawings | 207

Type: C-c<M-20-

[v /home/deb/boxey =O%
File Edit Options Buffers Tools Help
DExHE S D8 XO
T |
|
|
|
B
-u:*+* hoxey all (A, 8) (Picture:left Fill)------- 4
mr ESC 2 0 -

Emacs draws a line to the left. Next, use C-c * to set the default direction to “up,”
and then draw vertical bars back to the starting point.

Type: C-cAM-5 |

ld /home/deb/boxey o
File Edit Options Buffers Tools Help

DExHdE S $B8E &8 XUT
iy e |

-u:** hoxey 211 (1, 8) (Picture:up Fill)---—-————- 4

Emacs draws a line up that completes the box.

Editing in Picture Mode

By now, you should have a basic understanding of what picture mode can do for
you. It’s one of the more complicated minor modes because it redefines what many
of the major editing keys do—and with good reason. The editing techniques you use

208 | Chapter7: Simple Text Formatting and Specialized Editing

for most ASCII files just won’t work well for pictures. You don’t really want to insert
characters; the standard insert mode would prevent you from editing effectively,
because any character you type distorts the rest of the line. Therefore, picture mode
implicitly changes to overwrite mode. Many other features are redefined—some in
insignificant ways, others in more substantial ways.

Therefore, to do justice to picture mode, we have to revisit most of the basic editing
concepts. Please bear with us, or skip this section if you aren’t interested in pictures.
Let’s start at the beginning: basic cursor motion.

Cursor motion in picture mode

Picture mode makes some small but important changes in the basic cursor com-
mands. There’s an easy way to summarize these changes: in picture mode the buffer
becomes a grid of rows and columns. For example, consider what C-f does in most
other modes: it moves forward through the file, one character at a time. Typing C-f
repeatedly moves the cursor to the left, then at the end of the line, it jumps to the
first character on the next line. picture mode, C-f means “move to the right.” When
you reach the end of the line in picture mode, C-f doesn’t wrap to the next line; it
continues adding characters to the current line.

C-p and C-n become vertical “up” and “down” commands, respectively. Try editing
some sample text, moving to the end of a line, and typing C-p. Normally, as you type
C-p, the cursor stays at the end of the line; if the previous line is short, the cursor
moves to the left when it goes up. In picture mode, C-p and C-n always move up (or
down) in a straight line.

You can get to every place you need to go with C-f, C-b, C-p, and C-n. The arrow
keys work too, but you may want to know the cursor movement commands for mov-
ing in the default direction as well, so you can also go sideways when it’s faster. C-c
C-f moves you forward in the default direction (so “forward” here could mean to the
left, right, up, or down, as well as all directions in between). C-c C-b moves you
backward in the default direction. (Moving “up” or “down” relative to the default
direction isn’t defined.)

For example, let’s say you had drawn the house shown in Figure 7-1 and you wanted
to move the cursor down the left side of the roof. You would set the default direc-
tion to “southwest” by typing C-c /. If the cursor were on the top shingle on the left
side of the roof, typing C-c C-f would move you down the left side of the roof and
typing C-f would move you to the top-right shingle, as shown in Figure 7-5.

Inserting blank lines

As you continue to work in picture mode, you’ll find a few more surprises. Press-
ing Enter in picture mode moves you to the beginning of the next line, without
inserting a blank line—on the assumption that you probably don’t want to change

Making Simple Drawings | 209

emacs@ localhost.localdomain

File Edit Options Buffers Tools Help

DEx HE S $ahRQE XE
3

Typing C-f moves the cursor here

11

. B |

Typing C-¢ C-F—/ |

moves the cursor here LY
* A

7
-—:-— drasing A11 LE (Picture:sw Ovwrt Fill)-—------—- o
4

Figure 7-5. Using the default direction versus typical cursor movement commands

the relationship between lines. If you want to insert a new line, type C-0; an empty
line appears beneath the current line, and the cursor does not move. For example,
the cursor is initially on the O in the first line. If we want to open another line

between the two, we type C-o.

Initial state:

bd /home/debfalphanumeric - [X

File Edit Options Buffers Tools Help

DExEHES ¥ ODRNE X-

ghcdefghijklnnopgr s tuvmo(123456 T890AECDEF GHI JELMNOR QRS TUVWIYE
J shcdefghi jklunopgr s tuweay0123456 78904 CDEF GHI JELMNOP ORSTUVWEY E 3

7
-u:** alphammweric A11 (1,25
It

(Picture:right Fill)--—---——-—--———-- 4

Initial text; the cursor is on the 0 in the first line.

210 | Chapter7: Simple Text Formatting and Specialized Editing

/home/deb/alphanumeric
File Edit Options Buffers Tools Help

DExHdBE s ¥ODHE XE

ghcdefghijklmnoper s tuvins{]1 23456 TB90AF COEF GHI JELMWOR QR STUVWIY E

J sbcdefghijkInnopgrstuwmeoy0123456T890AECDEF GHI JELMNOP QRSTUVWIYE]

7
-u:** alphammweric A11 (1, 25) (Picture:right Fill)-—---——-—-———-- 4

i |

C-o opens a new line but doesn’t move the cursor.

One of the more difficult things to do in picture mode is to type a standard carriage
return that breaks a line in the middle. You can move to a point in the middle of a
line, type C-k to kill the right-hand portion, type C-o to insert a blank line; type
Enter to move to the beginning of this blank line, and type C-y to yank the right-
hand part of the line back. Or you can use the split-line command (C-M-o0), and then
delete the blank space at the beginning of the new line.

Deletion isn’t quite the same, either. In picture mode C-c C-d is the delete character
command that you’re used to: it deletes the character under the cursor and moves
the rest of the line to the left. An unadorned C-d deletes the character under the cur-
sor, replacing it with a space. Del deletes the character to the left of the cursor,
replacing it with a space.

Table 7-6 contrasts the picture mode commands with their normal text mode behavior.

Table 7-6. Picture mode v. text mode

Keystrokes In text mode In picture mode Picture mode alternative

Enter Insert a blank line. Move the cursor to the C-oinserts blank lines.

beginning of the next line.

Cd Delete the character and Replace the characterwith C-c C-d is like C-d in text mode.
move the text to left. Space and dont move.

Space Move the text to the right Move the cursor to the None; go back to text mode to insert
and insert a space. right and delete any char- blank spaces.

acter you space over.

Ck Erase the text on the current Erase the text on the cur- To delete a line, go back to text
line; pressing C-k twice rentline; it doesn’t delete ~ mode or use delete-rectangle.
deletes a line. the line.

Tab Insert tabs and move the Move the cursor across the To insert a tab’s worth of space, go

remaining text to the right.

screen but don't affect the
underlying text.

back to text mode.

Making Simple Drawings

ANl

Table 7-6. Picture mode v. text mode (continued)

Keystrokes In text mode In picture mode Picture mode alternative
Cn Move to the next line. Move down, stayinginthe (none)
same column.
Cp Move to the previous line. Move up, staying in the (none)
same column.
f Move one character forward Move one charactertothe (none)
in the file. right.
Cb Move one character back- Move one charactertothe (none)
ward in the file. left; stop at the beginning
of the line.

If you want to insert a block of blank space, you can use a rectangle command such
as open-rectangle. See the discussion of this command earlier in this chapter for
more information. Also, if you want to insert blank space at the end of a line, you
can use C-f.

To perform some tasks, you may find it easier to switch back temporarily to the
mode you’re used to. C-¢c C-c moves you back to the mode you were in before you
entered picture mode. Make any necessary changes, then enter picture mode again
by typing M-x picture-mode.

If you want to move something you’ve drawn, the easiest way is to use rectangles, as
described earlier in this chapter.

Tabs are also different in picture mode. By default, picture mode interprets the fol-
lowing characters as tab stops if they appear by themselves on a line: exclamation
point (1), hyphen (-) and tilde (~). If these characters appear on a line and the user
presses tab on the next line, these characters are presumed to denote tab stops. You
can change this behavior by setting the variable picture-tab-chars to other charac-
ters. If the characters appear with normal text, they are not interpreted as tab stops.
To use these characters as tab stops, press Esc-Tab (for picture-tab-search).

Table 7-7 summarizes the commands for editing in picture mode.

Table 7-7. Picture mode commands

Keystrokes Command name Action
(none) picture-mode Enter picture mode.
or
edit-picture
C-cCc picture-mode-exit Exit picture mode and return to the previous mode.
CcA picture-movement-up Set the default drawing direction to up.
Cc. picture-movement-down Set the default drawing direction to down.
Cc> picture-movement-right Set the default drawing direction to right.
Cc< picture-movement-left Set the default drawing direction to left.

212 | Chapter7: Simple Text Formatting and Specialized Editing

Table 7-7. Picture mode commands (continued)

Keystrokes
G

Cc’

Cc/

C-c\
CcCf

CcCh

Co
CGcCwr
CuCcCwr

CcCxr

CGcCr

CGcCy
CcCk
C-cTab

M-Tab

Command name
picture-movement-nw
picture-movement-ne
picture-movement-sw
picture-movement-se
picture-motion

picture-motion-reverse

picture-forward-column
picture-backward-column
picture-move-down
picture-move-up

picture-clear-column
delete-char
picture-clear-line

picture-open-line

picture-clear-rectangle-to-register
picture-clear-rectangle-to-register

picture-yank-rectangle-from-register

picture-draw-rectangle
picture-yank-rectangle
picture-clear-rectangle
picture-set-tab-stops

picture-tab-search

Action

Set the default drawing direction to northwest.
Set the default drawing direction to northeast.
Set the default drawing direction to southwest.
Set the default drawing direction to southeast.

Move the cursor forward in the default drawing direc-
tion.

Move the cursor backward in the default drawing
direction.

Move the cursor to the right one character.
Move the cursor to the left one character.
Move the cursor down one character.
Move the cursor up one character.

Blank out the character under the cursor; doesn’t move
remaining text to the left.

Delete the character under the cursor and move the
remaining text to the left.

Delete the text on the current line; the line is not
deleted if used twice.

Insert a blank line.
(lear the rectangle and save it in register r.
Delete the rectangle and save it in register r.

Insert the rectangle saved in register r at the cursor
position.

Draw a rectangle around current region.
Paste rectangle.
Erase rectangle.

Set tab stops applicable only in picture mode (!, -, and
~ denote tab stops by default).

Move to the next picture mode tab.

Drawing with the Mouse Using Artist

We would be remiss if we didn’t introduce you to artist mode, an easy way to create
ASCII art using the mouse. (You can also use keyboard commands, but trust us—
you won’t want to.)

Artist mode is a minor mode related to picture mode, so you use them together. For
example, you might draw using artist mode, then edit the picture in picture mode.
Or you might choose to use artist mode alone for your creations.

Making Simple Drawings | 213

We’re going to give you a taste of artist mode; you can perfect your skills in your
spare time. When you start artist mode, picture mode starts automatically.

Type: M-x artist-mode

Artist appears on the mode line, as does Picture.

When you start artist mode, pen drawing is selected by default.

Hold down the left mouse button and move around to scribble.

A random scribble.

With the pen, you can draw freestyle. Hold down the middle mouse button and a
menu appears, with Drawing, Edit, and Settings submenus. The Drawing menu
offers a variety of shapes from which to choose. Now that we’ve scribbled, let’s cre-
ate some graffiti using the spray can.

214 | Chapter7: Simple Text Formatting and Specialized Editing

Select Spray Can from the Drawing menu, then spray the screen by holding down the
left mouse button and moving the mouse.

/home/deb/graffiti
File Edit Options Buffers Tools Help
= Ly e
OExHEBE S $ 5B Q8 XE
[-.. -m- .
. LT - . = . —Tnon-—+-—
- . - #m. . R +AER -
%+ +.L -+ - Ti+—. —T+#-+. L = o
—#+. . L =HR-E- L= C-mEERRRL - . L TR -
-m o+ . #Tm# *m— LR R -MARAR BT — -+ AR+
- - CEE-+ C . AR M- T AR AR -+ Yt
F-mAF -+, R T | B s R R e R T L1
CEmA-dd. .- C=Ema—+FEmA. 4+ L 3T+ SR . L L B4——
& —+E—— - - TM-TRATL + -T-EERERERTAAAE. - - LB 4m -
A= EERe . 0 CT TAAE L L —FE e o et AT, -
L=k - AHEIL TR F-TEI FT-Tn AT AT - -
+E - +%. -, m-— L LomEE A L -mtmdt--me
R T . LmmAEmE. . o+ . omo.... L. C#m+ +#-
- meFE+. -0 LML . L. Lt
o +——F— MW . - *.
=Th—+. .
F%:** graffiti Top {16, E5) (Picture:right Artist/spray-can Fill)------- 4

A random spray.

We aren’t going to go deep into artist mode, but we would like to give you a flavor of
the basic drawing choices. You can draw rectangles (our personal favorite), ellipses,
lines (which strive to be straight), and poly-lines (which strive to be polygon-angu-
lar). Figure 7-5 shows a representative sample of shapes. With practice, you can cre-
ate complex drawings and edit them, either using the mouse or using standard
picture mode commands.

For rectangles, lines, and ellipses, hold down the left mouse and pull them to the size
and, in the case of lines, angle you prefer. (Ellipses are made of straight lines, so use
your imagination; this is ASCII art after all.) For poly-lines, draw a line by holding
down the left mouse button, then release it. Move the mouse away from that line to
the next corner of the polygon and click. Emacs draws a line connecting the two
points. Poly-lines allow you to create polygons quickly.

Table 7-8 provides an overview of artist commands. Artist works very well with the
mouse and the middle-button mouse menu; if you’re mouse-averse, you’ll prefer pic-
ture mode.

Making Simple Drawings | 215

/home/deb/artistsample
File Edit Options Buffers Tools Help
= 5 -
D= xBE S OB QE X
E
A& line
e +
| |
| |
| |
| e e
| | --f e
| | / A
B + ri Y
A rectangle | | An ellipse of sorts
*, £
\ /
==t -t f--
| == L i
i "
e s *
A i
| -t
| |
| |
o +
_j A shape made of poly-lines
-—:-- artistsample Top (1,0} (Picture:right Artist/pen-c Fill)-----———-———- 4
4

Figure 7-6. A representative sample of artist shapes

Table 7-8. Artist mode commands

Keystrokes Command name Action

(none) artist-mode Enter artist mode.

CcCc artist-mode-off Exit artist mode.

f artist-forward-char Move to the right one character (at end of line,
keep adding characters to current line).

Cb artist-backward-char Move to the left one character (at beginning of line,
does nothing).

Cn artist-next-line Move down a column (at end of buffer, keep add-
ing lines to the buffer).

Cp artist-previous-line Move up a column (at first line of buffer moves to
first position in file, then does nothing).

CcCaCo artist-select-operation Select an operation (press Tab to see a list).

or

Mouse-2

CcCaf artist-select-op-flood-fill Select flood fill as the operation.

Artist menu — Edit —

Flood-fill

C-cCaCk artist-select-op-cut-rectangle Draw a rectangle around an area, then cut.

Artist menu — Edit — Cut

216 | Chapter7: Simple Text Formatting and Specialized Editing

Table 7-8. Artist mode commands (continued)

Keystrokes

C-cC-aM-w

Artist menu —

Edit — Copy

CGcCaCy

Artist menu — Edit — Paste
CcCav

Artist menu — Drawing —
Vaporize

CcCaCd

Artist menu —

Drawing — Erase

CcCas

Artist menu — Drawing —
Spray-can

CcCae

Artist menu — Drawing —
Ellipse

CcCap

Artist menu — Drawing —
Poly-line

CcCar

Artist menu — Drawing —
Rectangle

C-cCal

Artist menu — Drawing —
Line

CGcCaCr

Artist menu — Settings —
Rubber banding

CGcCaCl

Artist menu — Settings —
Set Line

CcCalf

Artist menu — Settings —
Set Fill

Command name

artist-select-op-copy-rectangle

artist-select-op-paste

artist-select-op-vaporize-line

artist-select-op-erase-char

artist-select-op-spray-can

artist-select-op-ellipse

artist-select-op-poly-line

artist-select-op-rectangle

artist-select-op-line

artist-toggle-rubber-banding

artist-select-line-char

artist-select-fill-char

Action
Draw a rectangle around an area, then copy.

Paste what you copied wherever you click the
mouse.

Erase a line you select (literal line; not a line in the
file).

Set operation to erase (use the mouse as your
eraser).

Set operation to spray can.

Draw ellipses.

Draws poly-lines

Draw rectangles.

Draw lines.

If on (the default), show shape while stretching; if

not, mark end-points.

Select character to use when drawing lines (- is the
default).

Select character to fill shapes with (Space is the
default).

Problems You May Encounter

* Artist mode says you can’t change to another shape while drawing. Exit artist
mode and then reenter. Before drawing anything, click the mouse’s middle button
to display the pop-up menu and select the desired shape from the Drawing menu.

Making Simple Drawings | 217

CHAPTER 8
Markup Language Support

It’s true that many of the people who use Emacs are developers, writing code, tweak-
ing it, recompiling it, and just generally enjoying the services of an amazingly extensi-
ble work environment. A variety of people, including developers, need to produce
text for publication, whether internally, online, or in book format. This chapter
describes the markup language support that Emacs offers, a topic relevant to both
information publishers and developers, as more and more development work uses
variants of the Extensible Markup Language, XML.

Choosing a format for producing documents isn’t all that straightforward these days,
especially if you eschew Microsoft Word. Some people write HTML, and Emacs offers
a few options for this. HTML gives you some control over formatting but displays dif-
ferently on various browsers. Of course, it is important as the lingua franca of the Web.

Other text publishing options include the TEX family. TEX (pronounced “tek”) is a
formatter that was developed by Donald Knuth for generating books. LATEX (pro-
nounced “lay-tek”) is a set of TEX commands created by Leslie Lamport. With TEX
and IATEX, you can produce very precisely formatted text with equations, interest-
ing fonts, graphics, headers and footers, and the like. Whether using filters or fea-
tures of the program itself, you can publish TEX documents in a variety of formats.

Another option for publishing text—as well as programming—is XML. XML, when
combined with a Document Type Definition (DTD) or schema, enables you to write
text once and publish it in a variety of formats. Extensible Style Language (XSL) is
also important in this regard. Because the standards are still being defined, organiza-
tions involved in document production may choose an established XML dialect, such
as DocBook, as their publication format. XML at this point provides less precise con-
trol over format, but maximizes flexibility.

XML bridges the programming and publishing worlds, and what you do with XML
will in part determine what tools you use and what support you need. We discuss a
few options for writing XML in Emacs, including psgml mode and Jim Clark’s nxml
mode, which uses Relax NG schemas rather than DTDs for validation.

218

Some word processors and other tools integrate formatting and editing. These tools
are often called WYSIWYG (what you see is what you get) tools. What’s the advan-
tage of using Emacs versus a WYSIWYG tool? Well, whether you’re writing TATEX
XML, or HTML, you can be crystal clear about what’s in the file and how it’s struc-
tured if you use Emacs. Save a Microsoft Word file as HTML and then open the
resulting file in Emacs. Word bloats the file with additional tags and formatting that
is not strictly required. In terms of output, the streamlined and straightforward code
you picture in your mind’s eye when viewing a page is definitely not what you get, an
ironic consequence of using a WYSIWYG tool like Word to create markup files.
Chances are, if you’ve read this far, you’re planning to use Emacs anyway, so we
won’t belabor the point.

In this chapter, we talk about these markup modes:

* For writing HTML, Emacs HTML mode (a subset of SGML mode) and the add-
on HTML helper mode are discussed.

* For writing XML, Emacs SGML mode and the add-on modes psgml mode and
nxml mode are described in brief.

* For writing [ATEX documents, Emacs LaTeX mode is discussed.

These major modes help you insert formatting commands, or markup, into your
text. While the amount of help that Emacs offers varies, using the mode designed for
your text formatter will streamline your work.

At this point we must insert a caveat. We provide a barebones introduction to the
markup modes described in this chapter. What we say here will get you started, but
not much more than that. Entire books could be and have been written about using
each of the markup tools described here. Now that that’s out of the way, let’s talk
about a few features that are important in all the modes: comment handling and
font-lock mode.

Comments

All the modes described in this chapter share a feature with the programming lan-
guage modes such as Java mode and Lisp mode, which we discuss in Chapter 9. All
these modes understand comments and use a single command, M-; (for indent-for-
comment) to insert the appropriate comment syntax. Table 8-1 lists the comment
syntax for the tools in this chapter.

Table 8-1. Comments in markup modes

If you type M-; in: Emacs inserts:
HTML mode PSEEEEEN
HTML helper mode <l-- -
SGML mode <= -

Comments | 219

Table 8-1. Comments in markup modes (continued)

If you type M-; in: Emacs inserts:

nxml mode <= -

psgml mode <l-- >

LaTeX mode %% (on blank lines)

% (on lines with content)

Font-Lock Mode

Font-lock mode is discussed primarily in Chapter 9; it’s designed for coloring code to
make it easier to read. But the fact is that it works well in other modes too, like the
Buffer List (Chapter 4), Dired (Chapter 5), and in all the markup modes described in
this chapter.

To turn on font lock mode, choose Syntax Highlighting from the Options menu. If
you decide you want to turn it on for every session, select Save Options from the
Options menu and Emacs writes your .emacs file.

For more details on font-lock mode, see Chapter 9.

Writing HTML

Without doubt, the most commonly used markup language today is hypertext
markup language (HTML), used for creating web pages. HTML consists of text with
tags that define characteristics about the text. HTML is not hard to write, and you
could use Emacs or any other editor to write the tags and the text. An HTML tag
generally looks like this:

<tagname>text being tagged</tagname>

For your convenience, several modes are available for writing HTML in Emacs, includ-
ing HTML mode, HTML helper mode, html menus, and a variety of SGML" tools
including sgml mode and psgml mode. Of these tools, we’ve chosen to describe HTML
mode, a variant of sgml mode, which is included in GNU Emacs, and HTML helper
mode, which is a popular add-on. If you are writing XHTML, a stricter version of
HTML that can be validated, you should consider XHTML mode, described briefly in
this section, or psgml mode, covered later in the XML section of this chapter.

Serious web developers may want to investigate some of the cutting edge development
going on to make Emacs even more powerful. Check out HTMLModeDeluxe (http://
www.emacswiki.org/cgi-bin/wiki/HtmIModeDeluxe) and the Emacs WebDev Environ-
ment by Darren Brierton (http://www.dzr-web.com/people/darren/projects/emacs-webdev).

* SGML stands for standardized general markup language. Both XML and HTML are descendants of SGML.

220 | Chapter8: Markup Language Support

Both of these tools support mmm mode (where mmm stands for “multiple major
modes”). Using this feature, the cursor changes major mode depending on the section of
the page you are editing. When you edit a script, the mode changes automatically to
support that type of authoring. Both are excellent tools for building complex web pages.

In the following sections, we are not going to teach you to write HTML. (For more
information on writing HTML, see HTML and XHTML: The Definitive Guide by
Chuck Musciano and Bill Kennedy, O’Reilly) Rather, we’re going to teach you the
rudiments of using HTML mode and HTML helper mode to help you create HTML
documents.

Using HTML Mode

To start HTML mode, type M-x html-mode (or simply open an HTML file). Most
authors use a standard template when they write HTML. You may already have one.
If you don’t, HTML mode is happy to supply one for you. Simply start by typing C-c
C-t (for sgml-tag) or by selecting Insert Tag from the SGML menu. If you enter the
<html> tag that signifies the start of an HTML document, Emacs inserts a basic tem-
plate in your buffer.

Type: C-c C-t html Enter

hd -0
File Edit Options Buffers Tools Minibuf Help
DExHE s xBhRE XD

<html:
<head>
<titles[]
7
-u:** dickens.htwml &11 (3, 7) (HTML Fill)—--—-=-----==-—- 4
IL(Title: [

Emacs prompts for a title.

Writing HTML | 221

Type: A Tale of Two Cities Enter

/home/deb/dickens.html
File Edit Options Buffers Tools HTML SGML Help

DExHE s BDRE XT

[§ <html>
<head:>
<titleh Tale of Two Cities</title>
< /head:
<hody>
<hl>h Tale of Two Cities</hl>

<address>

<a href="mailto: cdickensBgreat-heyond. con" :Charles Dickens</ar
<faddress:

< /hody>

~ </html>

7
FE..:** dickens.html 211 (7.0) (Bl 3T == mmmm — e g

Emacs inserts an HTML template.

Note that Emacs automatically creates a first-level header that is equal to the title
you entered. It also inserts a hyperlink so that readers can email you. Depending
on your spam tolerance, you may want to delete that line. Also, Emacs is just
guessing at your name and email address. You can set these explicitly by adding
two lines to your .emacs file. Change Mr. Dickens’ information to settings appro-
priate for you.

(setq user-mail-address "cdickens@great-beyond.com™)

(setq user-full-name "Charles Dickens")
You could approach HTML mode in a couple of ways. You could learn the key
bindings for various tags, or you could simply use the sgml-tag command for every-
thing. It depends how many bindings you want to learn. A mixed approach may be
best, where you learn keystrokes for the most common tags and use sgml-tag for
less common tags.

Key bindings are intuitive in HTML mode. Like most specialized editing modes,
many functions are bound to C-c C-something. We've seen C-c C-t to insert a tag.
You won’t be too surprised to find that to move forward to the next tag you type C-c

222 | Chapter8: Markup Language Support

C-f and to move back to the previous tag you type C-c C-b. To insert an <href> tag,
type C-c C-h. You see what we mean.

HTML mode is designed for writing HTML, not XHTML. XHTML is stricter,
requiring all tags to have a closing tag. The common <p> tag is a salient example.
HTML authors would never use the closing tag </p> that XHTML requires. HTML
mode inserts a lone <p> tag even when given a command, such as sgml-tag, that nor-
mally inserts a tag pair. If you want to write XHTML, use XHTML mode instead.
Emacs starts this mode itself if your file contains a reference to an XHTML docu-
ment type definition. Other than completion of tags, XHTML mode is very similar to
HTML mode described here.”

Being able to hide the tags is a helpful feature. To hide HTML tags, type C-c Tab;
use the same command to display the tags again. Let’s say that we’ve inserted some
of our dickens file into the dickens.html file we were just working with.

Initial state:

/home/deb/dickens.html
File Edit Options Buffers Tools HTML SGML Help

e —— =5 =
DExEHEBE S $ abhR&E XD
[§ <html>

¢head:>
¢titlesA Tale of Two Cities</titles
</heads
<hody:

<hl:»h Tale of Two Cities:/hl:
<hZ>I

THE PERIOD
</hZy

LpE

EE was the hest of times, it was the worst of times, it was the age of

wisdom, it was the age of foolishness, it was the epoch of belief, it

was the epoch of incredulity, it was the season of Light, it was the

season of Darkness, it was the spring of hope, it was the winter of

despair, we had everything hefore us. we had nothing hefore us, we

~ were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its nolsiest avthorities insisted on its being receiwed, for

{ good or for evil, in the superlative degree of comparison only.

-—:** dickens.htwl Top (12, 0) T oy e e |

I

dickens.html with tags showing.

* At this writing, there is no way to enter XHTML mode explicitly. If your file looks like an XHTML file, Emacs
puts you in that mode automatically.

Writing HTML | 223

Type: C-c Tab

/home/deb/dickens.html
File Edit Options Buffers Tools HTRL SGML Help

DExHE S $ 0hRE XO
X

A Tale of Two Cities

4 Tale of Two Cities
I
THE PERIOD

fit was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing hefore us, we
=~ were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noilsiest authorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.
f'tr:** dickens.htwl Top (12, 0% L R s et e it o s g b 5|

Emacs hides the tags.

You can keep typing text, concentrating on what you’re writing rather than being
distracted by the markup. Emacs protects you from deleting tags when you’re writ-
ing by making hidden text read-only. If you move the cursor onto a hidden tag,
Emacs displays it in the minibuffer.

Of course, the whole purpose of writing HTML is to display it in a web browser.
Typing C-c C-v (for browse-url-of-buffer) opens the default web browser to view the
web page you’re writing.

If you’d like to look at the file in a web browser each time you save, you can turn on
a function called html-autoview-mode, invoked by pressing C-c C-s. When you save
the file, Emacs automatically opens it in the default browser.

Character encoding in HTML mode

What if you want to include special characters or characters from other character
sets in your web page? The short answer is that you can enter a character’s encoding
explicitly. For example, to enter a capital U with an umlaut, you can type Ü.
Many characters can also be represented as named entities, which are certainly eas-
ier to remember than numbers. For example, the named entity for a capital U with
an umlaut is Ü.

But HTML mode does provide more support than this. We’ll take the simplest case
first. Let’s say you can create a character with your keyboard; for a common case,

224 | Chapter8: Markup Language Support

take the ampersand, a character that must be encoded since it has a special meaning
in HTML. Type C-c C-n & Enter. Emacs inserts the entity for an ampersand, 8amp;.
You can insert entities for a wide variety of keyboard characters this way.

But let’s say that you are inserting characters that are not on your keyboard. For exam-
ple, perhaps you are in the U.S. writing up a list of contributors from Europe and many
of their names have accent marks. The ISO Latin-1 character set will handle this.

If you have a keyboard that already emits Latin-1 characters and Latin-1 is your
default coding system for keyboard input, inserting such characters is relatively
straightforward. Simply press C-c 8 to turn on a minor mode called SGML name
entity mode. Emacs says sgml name entity mode is now on.” C-c 8 toggles this state.
Type Latin-1 characters as you normally would and Emacs inserts the named enti-
ties associated with those characters.

For those of us with other keyboard encodings, however, there’s a bit more to do. To
get bindings to insert entities into your HTML file, we discuss two options. The first
is ISO accents mode. This mode provides support, as the name implies, for accented
text. Whether you’re typing umlauts, cedillas, circumflexes, acute, or grave marks,
ISO accents mode is up to the task. The other option is to use the C-x 8 prefix to
insert a wide range of entities, including currency signs, mathematical symbols, and
copyright signs (as well as all the accented characters ISO accents mode supports).

Using IS0 accents mode. To use ISO accents mode to insert entities in your file, type C-c 8
to turn on SGML name entity mode, then M-x iso-accents-mode Enter to turn on that
mode. In ISO accents mode, certain characters (including /, ~, ', ", *, and ") are inter-
preted as prefixes to create accented characters. SGML name entity mode captures these
keystrokes and automatically inserts the appropriate HTML entity. For example, typing

'a produces the HTML entity for 4, á. For specific key bindings, see Table 8-2.

Using the C-x 8 prefix. You can also insert a wide range of entities using C-x 8 after you
do some setup.t First enter SGML name entity mode by typing C-c 8. Next specify
Latin-1 as your character set by typing C-x Enter k latin-1 Enter. You can then enter
a large number of entities by typing commands prefixed with C-x 8. For example, to
insert the entity for a yen symbol, type C-x 8 Y. Watch the minibuffer. The literal
character will appear in the minibuffer as the entity is inserted. Both ISO accents
mode and the C-x 8 prefixes allow you to type a single undo command (C-_) to
translate the entity back into the literal character.

* Pay no attention to the fact that this is called SGML versus HTML name entity mode. Since HTML mode is
derived from SGML mode, many commands that work with HTML have sgml in their names. Also, note that
the command is called sgml-name-8bit-mode, a clear discrepancy with the minibuffer message.

T For some reason, perhaps the way SGML name entity mode is programmed, you can insert these entities

only using key bindings. The mode fails to trap the equivalent commands and translate them into entities.
For this reason, we focus on key bindings.

Writing HTML | 225

Table 8-2 provides a list of accented characters and the bindings that help insert
them. Table 8-3 lists other named entities including punctuation marks and symbols.

Table 8-2. Bindings for inserting entities for accented charactersa

C-x 8 prefix IS0 accents mode Character displayed
keystrokes shortcut Character entity in browser
Cx8" " ´

(x8'a 'a á F
Cx8'A 'A Á A
(x8'e 'e é é
C-x8'E 'E É E
C-x8'i 'i í i
Cx8'l '] ĺ i
Cx8'o ‘o ó 0
(x8'0 '0 &0acute; 0
Cx8'u 'u ú I
-x8'U v Ú 1]
C-x8'y 'y yacute; 1
Cx8'Y 'Y Ý y
(x8 a a 8agrave; a
Cx8°A “A 8Agrave; A
(x8'e e 8egrave; F
(x8°E E È E
Cx8i i digrave; i
Cx8°1 M| 8Igrave;]
(x8 0 ‘o 8ograve; h)
(x8°0 (] 80grave; 0
(x8"u u dugrave; u
x8°U U 8Ugrave; U
(-x8AMa Aa â a
C-x8AA AR 8Acirc; A
(-x8Ae Ne decirc; é
C-x8AE AE Ê £
Cx8Ai Aj î i
Cx8AI A Î I
(-x8Ao Ao ô 0
(x8A0 AO &0circ; 0
(x8Au Au ducirc; a
x8AU AU 8Ucirc; 0
Cx8"" i ¨

226 | Chapter8: Markup Language Support

Table 8-2. Bindings for inserting entities for accented characters® (continued)

C-x 8 prefix IS0 accents mode Character displayed
keystrokes shortcut Character entity in browser
(-x8"a "a ä Fi
Cx8"A "A Ä Iy
(x8"e "e ë é
Cx8"E "E Ë 4
Cx8"i "j ï i
Cx8"l " &Tuml; i
(x8"o "o ö 0
(x8"0 "0 &0uml; 0
(-x8"u "u ü ii
Cx8"U "U Ü U
Cx8"s "s ß R
Cx8"y "y 8yuml; y
Cx8"Y "y ÿ y
(x8~~ ¬ A
(x8~a ~a ã a
Cx8~A ~A 3Atilde; A
(x8~d ~d eth; a
(x8~D ~D 8ETH; b
C-x8~n ~n ñ f
Cx8~N ~N Ñ N
(x8~0 ~0 dotilde; 0
(x8~0 ~0 30tilde; 0
(x8~t ~t þ b
x8~T ~T Þ b
Cx8// ÷ +
(x80 11 8ring;

(-x8/a /a 8aring; 3
Cx8/A /A 8Aring; A
(x8/e /e 8aelig; F
C-x8/E /E 8AElig; K
(x8/0 /o ø

(-x8/0 /0 &0slash;

(-x8,, ~~ ¸

(-x8,c ~C ç ¢
(x8,C ~C Ç ¢

a For instructions on making these bindings work properly, read this section carefully.

Writing HTML | 227

Table 8-3. Bindings for inserting entities for punctuation and symbols

C-x 8 prefix keystrokes Character entity Character displayed in browser
(x81/2 ½ /2
(-x81/4 &fracis; 1/4
(-x83/4 &frac3s; 3/4
C-x8SPC nonbreaking space
(x8! diexcl; i

(x85$ ¤ n

Cx8+ ± +

(x8- ­ soft hyphen
(x8. · .

(x8< « «

(-x8= ¯ -

(-x8> » »

(x8? ¿ i

Cx8| ¦ |

(-x8¢ ¢ ¢

(-x8C © ©

Cx8L £ f

Cx8P ¶ |

(x8R dreg; @

(-x8S § §

C-x8u µ u

C-x8x × X

Cx8Y ¥ ¥

(X811 8sup1; !

(-x8A2 ² 2

(x8A3 ³ 3

(x8_a ª a

(x8_o º 0

Table 8-4 lists HTML mode commands.

Table 8-4. HTML mode commands

Keystrokes Command name Action

(none) html-mode Enter HTML mode.

CcCt sgml-tag Inserts a tag, prompting for attributes. If you

SGML — Insert Tag enter html as the tag name, inserts a tem-
plate html file.

228 | Chapter8: Markup Language Support

Table 8-4. HTML mode commands (continued)

Keystrokes

C-cTab
SGML — Toggle Tag Visibility

CcCv
SGML — View Buffer Contents

CcCs

Cc8

CcCf
SGML — Forward Tag

CcCh
SGML — Backward Tag

C-cDel or G-c C-d
SGML — Delete Tag

Cc1

Cc2

Cc3

Cc4

C-c5

C-c6

C-c Enter

C-cCch

HTML — Href Anchor
C-cCcn

HTML — Name Anchor
C-cCcu

HTML — Unordered List
C-cCco

HTML — Ordered List
CcCcl

HTML — List Iltem
CcCci

HTML — Image

CcGj

HTML — Line Break
CcCc-

HTML — Horizontal Rule

Command name

sgml-tags-invisible
browse-url-of-buffer

html-autoview- mode

sgml-name-8bit-mode

sgml-skip-tag-forward

sgml-skip-tag-backward

sgml-delete-tag

html-headline-1
html-headline-2
html-headline-3
html-headline-4
html-headline-5
html-headline-6
html-paragraph
html-href-anchor

html-name-anchor
html-unordered-list
html-ordered-list
html-list-item
html-image
html-line

html-horizontal-rule

Action

Hides or shows the tags in the file.
Display buffer in default browser.

If this mode is on (this command toggles it),
display file in browser each time it is saved in

Emacs.

If turned on, certain keystrokes for inserting
Latin-1 characters are captured and replaced
with the appropriate entities. See “Character
encoding in HTML mode” for details.

Move forward to the next tag of the same

level.

Move backward to previous tag of the same

level.

With cursor on or before a tag, deletes tag or

tag pair.

Insertan <h1>.
Insertan <h2>.
Insertan <h3>.
Insertan <h4>.
Insertan <h5>.

Insert an <h6> (useful for footnote text) .

Insert <p> tag.
Insert a hyperlink.

Insert an anchor so that a link can be created

to the anchored part of the page.
Create a bulleted list.

Create a numbered list.
Add an item to a list.
Insert <img src=""

Insert a line break (
).

Insert a horizontal rule (<hr>).

> and position cursor
for you to enter filename of image.

Writing HTML

229

Table 8-4. HTML mode commands (continued)

Keystrokes Command name Action

CcCcr html-radio-buttons Insert a group of radio buttons. Emacs
prompts for a name for the group, then
repeatedly for value, whether it should be
checked, and associated text. Press C-g to

complete the group.
C-cCcc html-checkboxes Insert a group of checkboxes. Emacs prompts
HTML — Checkboxes for aname for the group, then repeatedly for

value, whether it should be checked, and
associated text. Press C-g to complete the

group.
Ga? sgml-tag-help Provide brief verbal description of tag at cur-
SGML — Describe Tag sor position.

Using HTML Helper Mode

HTML helper mode, written by Nelson Minar and now maintained by Gian Uberto
Lauri, offers great flexibility in writing HTML. You can enable various hand-holding
features depending on your level of expertise and preferences.

Why would you choose HTML helper mode over Emacs’s own HTML mode?
Although HTML mode makes it easy to write basic HTML, it provides little support
for programmatic, interactive web pages. HTML helper mode supports ASP, JSP
(and JDE, the Java Development Environment, discussed in Chapter 9), and PHP, to
name a few more advanced features. If you’re writing HTML in Emacs, you're likely
to be a developer of such pages rather than a more text-oriented author. For this rea-
son, HTML helper mode continues to be popular among Emacs users.

Html helper mode is not part of Emacs by default. You can download it from its
homepage at http://www.nongnu.org/baol-hth. Download the file into a directory
such as ~/elisp, move to that directory, and then type:

% tar xvzf html-helper-mode.tar.gz

The system unpacks the tar file for you. (Of course, if you are installing on Win-
dows, you can simply use WinZip to decompress and unpack the file.) The tar file
contains several components, including:

* html-helper-mode.el—the Lisp file for HTML helper mode
* hhm-changelog—changes that have been made

* hhm-config.el—a Lisp file that allows Emacs customization to work”

* The version we downloaded in August 2004 marked this file as alpha code, so don’t be surprised if you find
bugs. Visit the file to see if its status has changed.

230 | Chapter8: Markup Language Support

Starting HTML helper mode

Before you can start HTML helper mode, you have to load it into Emacs. (For a com-
plete discussion of this topic, see “Building Your Own Lisp Library” in Chapter 11; we
describe it briefly here.) Begin by typing M-x load-file Enter. Emacs asks which file to
load and you enter ~/elisp/html-helper-mode.el and press Enter, adjusting the path
to reflect the location where you installed html-helper-mode.el. You enter the mode by
typing M-x html-helper-mode Enter. HTML helper appears on the mode line.

Making HTML helper mode part of your startup is easier. Put the following lines in
your .emacs file:

(setq load-path (cons "~/elisp " load-path))

(autoload 'html-helper-mode "html-helper-mode" "Yay HTML" t)
In the first line, insert the complete path for the directory in which htmi-helper-mode.el
is located in quotation marks, replacing ~/elisp to the correct value for your system. The
second line tells Emacs to load HTML helper mode automatically when you start
Emacs.

If you want to use HTML helper mode for editing HTML files by default, add this
line to .emacs as well:

(setq auto-mode-alist (cons '("\\.html?$" . html-helper-mode) auto-mode-alist))
If you edit other types of files with HTML helper mode, you may want to add lines to

include all the types of files you edit. Adding more lines is the easiest way. For exam-
ple, to make HTML helper mode the default for PHP files, add this line to .emacs:

(setq auto-mode-alist (cons '("\\.php$" . html-helper-mode) auto-mode-alist))

A brief tour of HTML helper mode

The main reason people like HTML helper mode is that it provides easy menu access
to a wide variety of options. Realizing that having a crowded menu with many sub-
menus could overwhelm new users, the authors created an option called Turn on Nov-
ice Menu. Selecting this option from the HTML menu provides a barebones menu, as
shown in Figure 8-1. Novice HTML writers can use these options to create a basic
HTML document without worrying about what forms, JSPs, PHP, and the like mean.

Selecting Turn on Expert Menu from the HTML menu returns the larger menu with
its numerous submenus, as shown in Figure 8-2.

Inserting an HTML template

HTML helper mode inserts a template for you every time you create a new HTML file.

Writing HTML | 231

File Edit Options Buffers Tools Help

'®@00 Emacs@Debra |nsert Paragraph (M-RET)
- Insert Hyperlink (C-cC-al)

D b A H JE % % : Insert Big Header (C-c M-h 2)

<IDOCTYPE HTML PUBLIC "-//IETF//D10 Hi Insert Unordered List (C-c C-1u)
<html> <heod> Insert List Iltem (C-c C-11)

<l-- hhmts stort --> <!-- hhmts end -->
</body> </html>

<title></title> Insert Inlined Image
</heod>
Turn on Expert Menu
<body> Load This Buffer in Browser (C-cC-zv)
<hl></hl> T —
|
<hr>
<oddress></oddress>

--i**_Emocs tole.html ALl L9 (HTML helper ABBrew)---=-c-ocooooooooiooioooo]

Figure 8-1. HTML helper mode’s Novice menu (Mac OS X)

File Edit Options Buffers TooIsHeIp

‘@06 Insert Hyperlinks 3]
D & Insert List Elements >
=) Insert Headers >
<IDOCTYPE HTML PUBLIC "-//TETF//07D HY Insert Logical Styles 2
<html> <head> Insert Physical Styles >
<title></title> Insert Text Elements 3
</heod> Insert Character Entities >
<body> Insert Inlined Images [2
<hl></h1> Insert Tables 4
Insert Structural Elements 4
Insert Form Elements »
<hr> Insert Scripts >
<oddress></oddress> Insert Timestamp Delimiter (C-c C-z 1)
3];];.1@323% --> <l-- hhmts end -2 prowse URL at point (C-c C-z u)
Load this Buffer in Browser (C-c C-zv)
Turn on Novice Menu
Narrow to ASP (C-c C-z a)
Narrow to PHP (C-c C-z p)
Narrow to VBScript (C-c C-z b)
MNarrow to JavaScript (C-c C-z j)
Use ASP
Use JSP
T —
ALl LB (HTML helper Ahbrev)----------- -
Z

Figure 8-2. HTML helper mode’s Expert menu (Mac OS X)

232 | Chapter8: Markup Language Support

Type: C-x C-f new.html

T emacs@FREAWARU =Joed

File Edit ©ptions Buffers Tools HTML Help
O xEHdBE S ¥ EBRE XY

< !DOCTYPE HTML PUBLIC "/ /IETF//DTD HTML//EN":>
<html> <head:>

<titler<ftitle>
<fhead>

| »

<hody>
<hlx<fhl>

<hrx

<address><faddress>

<!—-- hhmts start --»> <!-- hhmts end -—-=
<fhody> </html:>

-1%** new.html All Lo (HTHL helper)

HTML helper mode inserts a template with all the basic elements needed for a valid
HTML document (Windows).

The template contains all the basic HTML elements. The entire document is sur-
rounded by <html></html> tags. Then the head and the body are separated. Follow-
ing an <hr> tag that tells the browser to insert a horizontal line, called a horizontal
rule, the <address> tag leaves a place for the author to put in his or her email address.

In these days of spam, it’s unlikely you’ll want to do that. (You can leave the
<address> tag blank or delete it.)

If you do want to include an email address, enter a line like this in your .emacs file
(substituting your own email address, of course):

(setq html-helper-address-string
"Charles Dickens")

Writing HTML | 233

Type: C-x C-f newfile.html

fhome/deb/newfile.html

TR «<|DOCTYPE HIML PUELIGC '-//IETF//OTD HIML//EH'> | -//IETF //DTD HTML//EN">
<html> <head>

<titlexf/title:

< fhead:

<body:
<h1><fh1>

<hr>

<address>Charles Dickens</ax</address:
<l-- hhmts start --» <!-- hhnts end --»

< /body> < /himl>

Fonti fymg newfile hitml. .. (Attributes .}

Emacs inserts the HTML template, including the address.

Normally you begin filling out the template by entering title and a level-one header
(these are often the same). You can then begin writing paragraphs of text. Before you
start typing, press M-Enter. Emacs inserts <p></p> and positions the cursor between
them. You can see from the ending paragraph tag that HTML helper mode is work-
ing toward XHTML compliance.

Type: M-Enter

< |D0CTYPE HIML PUELIC "-//IETF//DTD HIML//EN"3>
<html> <head:

<titler></title>

< /head:>

<body>
<hls< /hls

<prfspr

<hry

<address><a href="nailto:cdickens@greatbeyond. con" »Charles Dickens</far</address>
<!-- hhmts start --» <!-- hhmts end --»

< /body> < /html>

Fontifying newfile html... {attributes J]

Emacs positions the cursor between <p> and </p> so you can start insert text.

234 | Chapter8: Markup Language Support

Putting tags around a region

When editing HTML files, you often spend a lot of time marking up existing text. If
you preface any of the tag commands with C-u, Emacs inserts the tags around a
region rather than putting them at the cursor position.” To demonstrate, we’ll start a

new HTML file and insert text from our dickens file.

Type: C-x C-f ataleoftwocities.html

home/deb/ataleoftwocities.html
File Edit Options Buffers Toals HTML Help

DExHE s 0hRRE XY

[§ <!DOCTYPE HTML PUBLIC "-//IETF//DTD HIML//EN">
<html> <head:

<title>@/title

< thead>

<body>
<hl:</hl>

<hr:

<!-- hhmts start --» <!-- hhmts end --»
< /body> < /html:

7
-u:+** ataleoftwocities.htwl 211 (3. 7) (HTML helper Fill)

<address><a href="nailto:cdickens@greatheyond. con" »Charles Dickens</address:>

J¥ Fontifying ataleoftwocities html. .. (Attributes .}

Emacs inserts the HTML template.

* For this to work, you must invoke the command through the keyboard, either using its key binding or its

command name. Using a menu option doesn’t work.

Writing HTML

235

Move the cursor past the <h1> pair and type C-x C-i dickens.

/home/deb/ataleof2cities. html

File Edit Options Buffers Tools HTML Help

DExEHEA S « BH 8 X8

I <|DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EH":
<html:> <head>

<titles><stitle>

< fhead:>

<body>
<hlz</hly

THE PERIOD

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of helief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
dezpair, we had everything hefore us, we had nothing before us, we

f were all going direct to Heawen, we were all going direct the other

--:** ataleof2cities.htwl Top (8,00 (HTML helper Fill)--—-----—-——--—————-—

¥ Fontifying ataleofZcities html... (Attributes .. .)

Emacs inserts the dickens text file, to which we can add HTML tags.

If you were really doing this properly, you’d type something like “A Tale of Two Cit-
ies, Chapter 1” as the title and the first-level header. But for now, you just want to
see how to mark up a region of existing text. Begin by marking the Dickens para-

graph as a region and type C-u M-Enter.

Type: M-h C-u M-Enter.

fhome/deb/ataleof2cities.html
File Edit Cptions Buffers Tools HTML Help

DExHEBE Y « ODHRE XE

[E T

THE PERIOD

wizsdom. it was the age of foolishness, it was the epoch of belief. it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest authorities insisted on its being receiwed, for
good or for evil, in the superlative degree of comparison only. </p:ll

<p:It was the hest of times, it was the worst of times, it was the age of

7
--:** ataleofZcities.htwml 12% (20,67 (HTML helper Fillj-------———==-—————-

¥ Fontifying atalecfZcities. hitml. .. (Attributes b

Emacs inserts opening and closing paragraph tags.

236 | Chapter8: Markup Language Support

Using completion

HTML helper mode supports completion. You type the beginning of a tag and press
M-Tab (for tempo-complete-tag).” If there’s more than one possibility, a window of
possible completions appears. Let’s say you are working on a bulleted list.

Type: <olM-Tab

(ld /home/deb/topten.html - B
File Edit Options Buffers Toals HTML Help

DExHE s bR E XE

j < |DOCTYPE HIML PUELIC "-//IETF//DT0 HIML//EN">
<htnl> <head:
<title:My Top Ten Novels</title:
< thead:
<body>
<hl:¥y Top Ten Novels</hl:
<ol
<11
<11
<jol>
o <hre:
<address>Charles Dickens</address>
<l-- htmts start --» <|-—- hhmts end --»

-u:** topten.html Top (9, 6) (HTML helper Fill)-—--—--—cooooommmommm oo oo o 4
¥ Fontifying topten. html. .. (Attributes ..)

Emacs inserts the tags to begin and end the list and the tag for one list item.

Note, however, that completion is sometimes case-sensitive. For example, typing <s
M-Tab shows the following completions:

<select <span class=
<span style = <strike>
 <samp>

Notice that the <script> tag is missing. But if you try typing <S M-Tab, the script tag
and its attributes are inserted, as in:

<SCRIPT TYPE="text/javascript">

</SCRIPT>
The distinction between upper- and lowercase shows that HTML helper mode is
moving toward XHTML compliance, but hasn’t quite arrived. XHTML requires that
all tags be lowercase. On the positive side, note that the attribute is in quotation
marks, another XHTML requirement.

* If M-Tab is trapped by the operating system to switch between applications (it is on Red Hat Linux), type
Esc Tab instead.

Writing HTML | 237

Turning on prompting
Some HTML tags require you to input certain attributes. For example, when you
enter a hyperlink, you have to specify the URL of the link and the text that the user
will select. If you type C-c C-al (the lowercase letter “L”) to enter a link, HTML
helper mode inserts:

with the cursor on the second quotation mark so you can type in the URL. HTML
helper mode offers additional help if you turn on prompting. Add this line to your
.emacs file:

(setq tempo-interactive t)

Note that HTML helper mode prompts only for required attributes; if you want to
input optional attributes, you have to add them by hand.

Whether you consider prompting useful or intrusive is a matter of personal taste. If
you are a beginning HTML author, prompting may help you remember to enter all
the necessary information for each tag. If you find you don’t like it, simply delete the
line you added to the .emacs file.

Character encoding in HTML helper mode

HTML helper mode supports entry of only the most common character entities.
However, it does make it easy to insert these entities. Simply type C-c before the
character in question. For example, type C-c < to enter the escape code for a less-
than sign (&1t;).

Character entities are also available by selecting HTML — Insert Character Entities.

Table 8-5 lists bindings for inserting character entities in HTML helper mode.

Table 8-5. Inserting character entities in HTML helper mode

Character rendered
Keystrokes Command name Character entity on web page
CGc> tempo-template-html-greater-than dgt; >
Cc< tempo-template-html-less-than < <
Cc& tempo-template-html-ampersand & &
Ccu tempo-template-html-u’-(&ù) Bugrave; u
C-ci tempo-template-html-i’-(&ì) digrave; i
Cco tempo-template-html-o’-(&ò) 8ograve; 0
C-cE tempo-template-html-e'-(&é) 8eacute; é
C-ce tempo-template-html-e’-(&è) degrave; &
Cca tempo-template-html-a’-(&à) 8agrave; 3
C-cSPC tempo-template-html-nonbreaking-space nonbreaking space

238 | Chapter8: Markup Language Support

Table 8-5. Inserting character entities in HTML helper mode (continued)

Keystrokes
Cc-

Gc@

Cc$

Cc"

Cc#

Command name
tempo-template-html-soft-hyphen
tempo-template-html-copyright
tempo-template-html-registered
tempo-template-html-quotation-mark
tempo-template-html-ascii-code

Character rendered
Character entity on web page
­ soft hyphen
© ©
dreg; ®
" "
Enter the 3-digit code for specified character

the desired character

Table 8-6 lists the key bindings for HTML helper mode. There are key bindings for
advanced HTML features such as forms as well as for some of the HTML 3.0 fea-
tures. Some tags would normally appear on different lines (for example, in the case
of a list); in this table, they are shown on one line.

Table 8-6. HTML helper mode commands

Keystrokes
Cu

M-Tab

C-cCzv

HTML — Load This Buffer

in Browser

C-cCzu

HTML — Browse URL at Point
C-cM-h1

HTML — Insert Headers — Header 1
C-cM-h2

HTML — Insert Headers — Header 2
C-cM-h3

HTML — Insert Headers — Header 3
C-cM-h4

HTML — Insert Headers — Header 4
C-cM-h5

HTML — Insert Headers — Header 5
C-cM-h6

HTML — Insert Headers — Header 6
M-Enter

HTML — Insert Text Elements —
Paragraph

C-cCal

HTML — Insert Hyperlinks —
Hyperlink

Command name

universal-argument
tempo-complete-tag
browse-url-of-file
browse-url-default-browser
tempo-template-html-header-1
tempo-template-html-header-2
tempo-template-html-header-3
tempo-template-html-header-4
tempo-template-html-header-5
tempo-template-html-header-6

tempo-template-html-
paragraph

tempo-template-html-hyperlink

Action

When used before any other tag command,
insert tags around a region.

Complete the current tag.

Display this file in the default browser.
Load the URL at point in default browser.
Insert <h1></h1>.

Insert <h2></h2>.

Insert <h3></h3>.

Insert <h4></h4>.

Insert <h5></h5>.

Insert <h6></h6>.

Insert <p></p>.

Insert.

Writing HTML | 239

Table 8-6. HTML helper mode commands (continued)

Keystrokes

CcCan

HIML — Insert Hyperlinks — Target
C-c Enter

HTML — Insert Text Elements —
Line Break

Cc=

HTML — Insert Text Elements —
Horizontal Line

CcCzt

HTML — Insert Timestamp Delimiter
C-cCht

HTML — Insert Structural

Elements — Title

C-cTaba

HTML — Insert Inlined Images —
Image

CcClu

HTML — Insert List Elements —
Unordered List

CcClo

HTML — Insert List Elements —
Ordered List

CcC-t

HTML — Insert List Elements —
Definition Item

CcClI

HTML — Insert List Elements —
List ltem

CcCld

HTML — Insert List Elements —
Definition List

CcClm

HTML — Insert List Elements —
Menu List

CcClr

HTML — Insert List Elements —
Directory List

CcCli

HTML — Insert List Elements —
List Item

CcCfz

HTML — Insert Form Elements —
Rest Form

Command name

tempo-template-html-link-
target

tempo-template-html-line-break

tempo-template-html-
horizontal-line

html-helper-insert-timestamp-

delimiter-at-point
tempo-template-html-title

tempo-template-html-image

tempo-template-html-unor-
dered-list

tempo-template-html-ordered-
list

tempo-template-html-
definition-item

tempo-template-html-item

tempo-template-html-
definition-list

tempo-template-html-menu-list

tempo-template-html-
directorylist

html-helper-smart-insert-item

tempo-template-html-reset-
form

Action

Insert .

Insert a literal line break,
.

Insert a horizontal rule, <hr>.

Insert timestamp delimiters.

Insert <title></title>.

Insert .

Insert <1i></1i>.

Insert <1i></1i>.

Insert <dt><dd>.

Insert <1i></1i>.

Insert <d1><dt><dd></dl>.

Insert <menu><1i></1i></menu>.

Insert <dir></1i></dir>.

Insert <1i></1i>.

Insert <input type="RESET">.

240 |

Chapter 8: Markup Language Support

Table 8-6. HTML helper mode commands (continued)

Keystrokes

CcCfb

HTML — Insert Form Elements —
Button

CcC-fm

HTML — Insert Form Elements —
Submit Form

CcCfs

HTML — Insert Form Elements —
Selections

CcCfo

HTML — Insert Form Elements —
Option

CcCfv

HTML — Insert Form Elements —
Option with Value

C-cCAfi

HTML — Insert Form Elements —
Image Field

CcCfr

HTML — Insert Form Elements —
Radiobutton

CcCfc

HTML — Insert Form Elements —
Checkbox

CcCfp

HTML — Insert Form Elements —
Text Area

C-cCff

HTML — Insert Form Elements —
Form

CcCft”

HTML — Insert Form Elements —
Text Field

C-cCfh
HTML — Insert Form Elements —
Hidden Field

CcM-Is

HIML — Insert Logical Styles — Strong
CcM-le

HIML — Insert Logical Styles —
Emphasized

C-cM-1b

HTML — Insert Logical Styles —
Blockquote

Command name

tempo-template-html-button

tempo-template-html- submit-
form

tempo-template-html-selections

tempo-template-html-option

tempo-template-html-option-
with-value

tempo-template-html-input-
image-field

tempo-template-html-input-
radiobutton

tempo-template-html-checkbox

tempo-template-html-text-area

tempo-template-html-form

tempo-template-html-text-field

tempo-template-html-hidden-
field

tempo-template-html-strong

tempo-template-html-empha-
sized

tempo-template-html-block-
quote

Action
Insert <input type="BUTTON">.

Insert <input type="SUBMIT">.

Insert <select><option></select>

Insert <option>.

Insert <option value="">.

Insert <input type="IMAGE">.

Insert <input type="RADIO">.

Insert <input type="CHECKBOX">.

Insert <textarea></textarea>.

Insert <form></forms.

Insert <input type="TEXT">.

Insert <input type="HIDDEN">.

Insert .

Insert <cem>.

Insert <blockquote></blockquote>

Writing HTML | 241

Table 8-6. HTML helper mode commands (continued)

Keystrokes

CGcM-lp

HIML — Insert Logical Styles —
Preformatted

C-cCps

HTML — Insert Physical Styles —
Strikethru

CcCpf

HTML — Insert Physical Styles — Fixed
CcCpu

HTML — Insert Physical Styles —
Underline

CcCpi

HTML — Insert Physical Styles — ltalic
CcCpb

HIML — Insert Physical Styles — Bold
CcCpc

HIML — Insert Physical Styles —
Center

CcCpl

HTML — Insert Physical Styles —
Spanning Class

CcCp5

HTML — Insert Physical Styles —
Spanning Style

CcCsa

HIML — Insert Logical Styles —
Address

C-cM-Id

HTML — Insert Logical Styles —
Definition

CGcM-lv

HTML — Insert Logical Styles —
Variable

C-cM-1k

HIML — Insert Logical Styles —
Keyboard Input

CcM-Ir

HTML — Insert Logical Styles —
(itation

CGcM-Ix

HTML — Insert Logical Styles —
Sample

CGcM-c

HIML — Insert Logical Styles — Code

Command name

tempo-template-html-prefor-
matted

tempo-template-html-strikethru

tempo-template-html-fixed

tempo-template-html-underline

tempo-template-html-italic
tempo-template-html-bold

tempo-template-html-center
tempo-template-html-spanning-
class

tempo-template-html-spanning-

style

tempo-template-html-address

tempo-template-html-definition

tempo-template-html-variable

tempo-template-html-keyboard

tempo-template-html-citation

tempo-template-html-sample

tempo-template-html-code

Action

Insert <pre></pre>.

Insert <s></s>.

Insert <tt></tt>.

Insert <u></u>.

Insert <i></i>.
Insert .

Insert <center></centers.

Insert <span class=

Insert <span style=

Insert <address></address>.

Insert <dfn></dfn>.

Insert <var></var>.

Insert <kbd></kbd>.

Insert <cite></cite>.

Insert <samp></samp>.

Insert <code></code>.

242 |

Chapter 8: Markup Language Support

>.

>.

Table 8-6. HTML helper mode commands (continued)

Keystrokes Command name Action

CcCGhb tempo-template-html-base Insert <base href="">.
HTML — Insert Structural Elements —

Base

C-cC-hl tempo-template-html-link Insert <link href="">.
HTML — Insert Structural Elements —

Link

CGcCGhm tempo-template-html-meta- Insert <meta content="">.
HTML — Insert Structural Elements— name

Meta Name

CcChn tempo-template-html-nextid Insert <nextid>.

HTML — Insert Structural Elements —

Nextid

CcChi tempo-template-html-isindex Insert <isindex>.

HTML — Insert Structural Elements —

Isindex

CcChB tempo-template-html-body Insert <body></body>.
HTML — Insert Structural Elements —

Body

C-cChH tempo-template-html-head Insert <head></head>.
HTML — Insert Structural Elements —

Head

CcCtt tempo-template-html-table Insert <table></table>.
HTML — Insert Tables — Table

CcCtp tempo-template-html-html- Insert <caption></caption>.
HTML — Insert Tables — html table table-caption

caption

C-cCtd tempo-template-html-table- Insert <TD></TD>.

HTML — Insert Tables — Table Data data

C-cCth tempo-template-html-table- Insert <TH></TH>.

HTML — Insert Tables — Table Header ~ header

CcCtr tempo-template-html-table-row Insert <TR></TR>.

HTML — Insert Tables — Table Row

Writing XML

Writing XML involves entering structured information that complies with a docu-
ment type definition or schema. Even within Emacs, the XML support you receive
varies. At the low end of the spectrum, there is plain vanilla Fundamental mode. It
provides simply a screen where you type. Specialized modes like SGML mode pro-
vide support for entering tags, as we saw earlier in our discussion of HTML mode, a
derivative of SGML mode. But neither of these approaches help you parse or vali-
date XML (SGML mode has a command for validating, but it is tricky to set up cor-
rectly). More advanced Lisp packages, though currently not included in Emacs, are

WritingXML | 243

available to provide these functions. These add-on packages provide validation
against DTDs or schemas, parsing capabilities, and, typically, an array of standard
DTDs and schema definitions. In Emacs, these tools primarily work in conjunction
with one of two major modes. psgml mode validates XML (and SGML) against
DTDs. The newer nxml mode validates against RELAX NG schemas. We cover both
of these options in this section. Before we go into detail on those modes, however,
let’s look briefly what Emacs has built-in with SGML mode.

Writing XML with SGML Mode

Emacs’s own SGML mode provides support for entering tags. We covered much of
this earlier under HTML mode, so we provide just one brief example here. Inserting,
hiding, and showing tags are especially helpful features provided by SGML mode.

Let’s look at a chapter on enumerated types by Java in a Nutshell author David
Flanagan. This chapter uses the DocBook DTD.

Initial state:

Emacs File Edit Options Buffers Tools SGML Help

r . |

ene Emacs@Debra-Camerons-Computer.local
DExEBR Y $ OB RE XY

| B7xml version="1.0"7>
<!DOCTYPE chapter SYSTEM “dochook/dochooks. dtd"s m
<chopter id="enums">
<tltle=Enumeroted Types</title>
<paro>
In previous chopters, we've seen the <literol=closs</literol>
keyword used to define closs types, and the
<literol=interfoce</1iterol> keyword used to define interfoce types.
This chopter introduces the <literol=enum</literaol= keyword, which
is used to define on enumercted type (informolly colled an enum).
Enumeroted types ore new in Jova 1.5, aond the feotures described

here connot be used (although they can be portiolly simuloted) prior :

to thot release. b
-u:---Emocs enums.xml Top L1 (AML Abbrev)--------------——---—----------_-
£

Editing a document that uses the DocBook DTD (Mac OS X).

Note that Emacs displays XML on the mode line. XML mode in this context is a sub-
set of SGML mode. Actually, despite this name, all the commands in this mode start
with sgml, not xml. The menu of relevant commands is called SGML as well. Emacs
doesn’t pretend to have extensive XML support.

We want to insert a paragraph before the first paragraph.

244 | Chapter8: Markup Language Support

Add a blank line following the title and type: C-c C-t

Emacs File Edit Options Buffers Tools Minibuf Help
78 oD Emacs@Debra-Camerons-Computer.local

DExEHBE YEBREXD

<?xml version="1.0"?>
<|DOCTYPE chapter SYSTEM "dochook/dochooky. dtd"> m
<chopter 1d="enums"=

<title=Enumeroted Types</title»

<paro>
In previous chopters, we've seen the Eliter'ubclussdliter‘ub
keyword used to define closs types, and the
<literol=interfoce</literol> keyword used to define interfoce types.
This chopter introduces the <literol=enum</literol> keyword, which
is used to define an enumeroted type (informolly called an enum).

Enumeroted types are new in Javo 1.3, ond the feotures described |&
here connot be used (although they can be partiolly simulated) prior b
-u:**-Emocs enums.xml Top LS (XML Abbrev)----------------c-o-oooooooooo--
Tag: 4

Emacs inserts an open angle bracket and prompts for the tag name (Mac OS X).

Type: para Enter

Emacs File Edit Options Buffers Tools SGML Help
06 Emacs@Debra-Camerons-Computer.local

DExEHBASI s D RE XD

<7xml version="1.0"7»
<!DOCTYPE chapter SYSTEM “dochook/dochook:. dtd"= m
<chopter 1d="enums"=
<title=Enumeroted Types</title»
<poro>&/poro> ¥
<paro>
In previous chopters, we've seen the <literal>closs</literols
keyword used to define closs types, and the
<literol=interfoce</literol> keyword used to define interfaoce types.
This chopter introduces the <literol=enum</literol> keyword, which
is used to define on enumeroted type (informally called an enum).
Enumeroted types are new in Javo 1.3, ond the feotures described
here connot be used (although they can be partiolly simulated) prior b
-u:**-Emgcs enums.xml Top LS (XML Abbrev)---------------- -~

r

Emacs inserts opening and closing paragraph tags (Mac OS X).

Note that Emacs is not following our indentation style. We can correct it by moving
to the beginning of the line and pressing Tab. See Table 8-4 earlier in this chapter for
details on SGML mode commands.

WritingXML | 245

TEI Emacs: XML Authoring for Linux and Windows

The Text Encoding Initiative (TEI) wanted an XML authoring environment for
Emacs, so it created (the somewhat misleadingly named) TEI Emacs.” Despite its
name, TEI Emacs does not include Emacs itself. Rather, it creates an authoring envi-
ronment for writing XML using nxml mode or psgml mode. It incorporates XSLT
tools, along with most of the standard DTDs, such as the three forms of XHTML
DTDs (strict, frameset, and transitional), DocBook DTDs, and more. Naturally, the
TEI’'s own DTDs and schemas are also included.

The active development of this tool and its careful packaging led us to describe this
tool despite the fact that it is limited to Linux and Windows at this writing.t You
should have Emacs 21.3 already installed before you install this tool. Installing TEI
Emacs is trivial. The Windows version has an installer, and Linux users follow sim-
ple instructions at http://www.tei-c.org/Software/tei-emacs/, the web site for down-
loading TEI Emacs.

Writing XHTML Using nxml Mode

James Clark, an XML pioneer, wrote nxml mode to provide Emacs support for his
schema standard RELAX NG. For details on the standard, visit http://www.relaxng.org/
or pick up a copy of RELAX NG by Eric van der Vlist (O’Reilly). The important thing
about nxml mode is that it validates text as you type instead of making validation and
debugging separate steps.

If you did not install TEI Emacs, you can download nxml mode and its schemas
from http://thaiopensource.com/download/. If you decide to become an active nxml
mode user, you may want to join a related Yahoo Group discussion list (see http://
groups.yahoo.com/group/emacs-nxml-mode/).

In this section, we change our running HTML example to XHTML, first using a
RELAX NG schema and nxml mode. Open dickens.html, then enter nxml mode.

* We’d like to thank Emacs guru Eric Pement for pointing out TEI Emacs to Deb.

T We sincerely hope that this support will be extended to Mac OS X as well, providing developers and writers
on that platform the benefits of this tool’s capabilities. Meanwhile, Mac users may want to install nxml mode
from http://thaiopensource.com/download/ and psgml mode from http://www.lysator.liu.se/projects/about_
psgml.html.

246 | Chapter8: Markup Language Support

Type: C-x C-f dickens.html Enter M-x nxml-mode Enter

/homefdeb/dickens.html
File Edit Options Buffers Tools MNxL UniChar XSLT Help

DExEHE I sEBDHRE XE

[E Butnl:

<head>
<titlerh Tale of Two Cities</title>
< /head:
<hody:
<hl:A Tale of Two Cities</hl:
<hiyI
THE PERIOD
<l
pr
It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest avthorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.

<address>

<a href="mailto:cdickens@great-heyond. com" :Charles Dickens
< faddress>

</body>

</html>

7

—&-:-- dickens.html &1l (1,0} (nFML Trwalid ESLT Fill)-—----------o-oooooo

¥ Using schema fsr/local/TEI/tei-emacs/elisp/sml roml-nodesschema shtml. rne

Editing dickens.html in nxml mode.

nxml mode tells you what schema it is using in the minibuffer. It’s smart enough to

know that its XHTML schema is best for this purpose.

The mode line tells us that this file is currently invalid. Emacs highlights errors with

red underscores. Let’s deal with these errors one at a time.

Writing XML

247

Move the cursor to the red underscore at the end of the html tag.

/homefdeb/dickens.html
File Edit Options Buffers Tools MNxL UniChar XSLT Help

DExEHE I EBDHE XE

[<htnlB

<head:
<titlerh Tale of Two Cities</title>
< /head:
<hody:
<hl:A Tale of Two Cities</hl:
<hiyI
THE PERIOD
<l
pr
It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest avthorities insisted on its being received, for
good or for evil, in the superlatiwve degree of comparison only.

<address >

<a href="mailto:cdickens@great-heyond. com" :Charles Dickens
< faddress>

</body>

</html>

z
—&-:-- dickens.html &ll (1,5} (nFML Trwalid ESLT Fill)-—----------o-ooooooo |
JX Missing smlns="http:/ Aner w3 org/1998 htnl"

The minibuffer describes what’s missing.

Editing XHTML with a schema requires a namespace definition in the <html> tag.
nxml mode knows what we need. This is a good time to use nxml’s completion fea-
ture to let it supply the details for us. C-Enter completes the current tag.

248 | Chapter8: Markup Language Support

Type: Space xmlns=" C-Enter

File

/homefdeb/dickens.html

Edit Options Buffers Tools MxML UniChar XSLT Help

L

ExHEAS ¥OHRIEEXT

[

<htnl smlnz="http: /frew. w3, 0rg /1999 <html B

<head:
<titlerh Tale of Two Cities</title>
< /head:
<hody:
<hl:A Tale of Two Cities</hl:
<hiyI
THE PERIOD
<fhEs
pr
It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest avthorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only

<address:>
<a href="mailto:cdickens@great-heyond. com" »Charles Dickens
<faddress>

</hody>
</html>
z
—&-:** dickens.html 211 (1,64Z2) (nFML Trwalid ESLT Fill)-—----------o-oooooo b
|¥ Auto-saving. .. done

Emacs inserts the rest of the namespace declaration.

The mode line tells us that this file is still invalid. Moving to the underlined address
tag gives us a fairly cryptic reason; it says, Element not allowed in this context.
Let’s move down to the closing body tag to see if that error provides any more
insight into the problem.

Writing XML

249

Move to </body>.

/homefdeb/dickens.html
File Edit Options Buffers Tools MxL UniChar XSLT Help

DExHEAS $EBHRE XE

[<htnl smlos="http://wrw. w3, org/1999 ditml" »

<head:
<titlerh Tale of Two Cities</title>
< /head:
<hody:
<hl:A Tale of Two Cities</hl:
<hiyI
THE PERIOD
<l
pr
It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest avthorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.

<address >

<a href="mailto:cdickens@great-heyond. com" :Charles Dickens
< faddress >

B/Fody

</html>

z
—&-:** dickens.html &1l (27, 0) (nFML Trwalid ESLT Fill)-—------------ooooooo |
¥ Mizsing end-tag "p"

The minibuffer says Missing end-tag "p" .

This message provides a clue. Although HTML authors are not accustomed to add-
ing closing tags to paragraphs, XHTML requires them. Let’s insert a closing tag after
our paragraph.

250 | Chapter8: Markup Language Support

Move to the line following the Dickens paragraph and type: </

/homefdeb/dickens.html
File Edit Options Buffers Tools MNxL UniChar XSLT Help

DExHEAS $BHRE XE

[<htnl smlos="http://wrw. w3, 0rg/1999 sdhitml" »

<head:
<titlerh Tale of Two Cities</title>
< /head:
<hody:
<hl:A Tale of Two Cities</hl:
<hiyI
THE PERIOD
<l
pr
It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it
was the epoch of incredulity, it was the season of Light, it was the
season of Darkness, it was the spring of hope, it was the winter of
despair, we had everything before us, we had nothing before us, we
were all going direct to Heawen, we were all going direct the other
way--in short, the period was so far like the present period, that
some of its noisiest avthorities insisted on its being received, for
good or for evil, in the superlative degree of comparison only.

i |

<address>

<a href="mailto:cdickens@great-heyond. com" :Charles Dickens
<faddress>

< /hody

</html>

z
—&-:** dickens.html &1l (20, 4) (nFEML ¥alid XSLT Fill)-----------—--o-oooo |

24

Emacs inserts a closing tag.

Note that just typing </ was adequate to insert a closing tag for the current element.
We don’t need to type C-Enter to invoke completion. That’s because in nxml mode,
slash is bound to nxml-electric-slash. It automatically completes the nearest open
element, another shortcut for us.

A similar command is C-c C-f (for nxml-finish-element). With C-c C-f, you don’t
have to type anything; it inserts the relevant closing tag for you.

Look at the mode line now. It says valid. Using nxml mode, it’s not too tough to take
an HTML file and change it to valid XHTML.

Validating text as you type it is a key feature of nxml mode. It’s validating against a
schema. To specify a different schema, type C-c C-s (for rng-set-schema-and-validate).
The minibuffer prompts for the file where the schema resides. A number of schemas can
be found online at http://www.relaxng.org/#schemas. You can also convert DTDs to
schemas using tools listed on that page.

Your menus vary depending on whether you install nxml mode directly or whether you
use TEI’s version. TEI provides support for encoded characters using the UniChar
menu. It also provides extensive XSLT support. TEI’s NXML menu includes some TEI

Writing XML | 251

skeletons as well as nxml mode options. Nxml mode installed from thaiopensource.org
includes an XML menu with options for setting the schema and customizing the mode.
Table 8-7 lists some of the commands available in nxml mode.

Table 8-7. Nxml mode commands

Keystrokes Command name

C-Enter nxml-complete

/ nxml-electric-slash

CcCn rmg-next-error

CcC mg-save-schema-location

CcCs mg-set-schema-and-validate

CcCa rmg-auto-set-schema

CGcCw mg-what-schema

CcCv mg-validate-mode

CcCu nxml-insert-named-char

(none) nxml-insert-xml-declaration

C-cTab nxml-balanced-close-start-tag-
inline

CcCh nxml-balanced-close-start-tag-
block

CcCf nxml-finish-element

M-h nxml-mark-paragraph

M-} nxml-forward-paragraph

M-{ nxml-backward-paragraph

CM-p nxml-backward-element

C-M-n nxml-forward-element

M- nxml-down-element

C-M-u nxml-backward-up-element

Action

Complete the current tag.

Add a closing tag for the last open element.
Move to the next error.

Creates (or updates) a file called schemas.xm/
in your home directory. This file associates
schemas with files.

Set the schema and validate against it.

Set the schema automatically according to
the contents of the file.

Show in the minibuffer the current schema
associated with this file.

Toggles whether the mode line indicates that
the file is valid or invalid.

Insert a named character; press Tab to see a
list.

Insert an XML declaration at the beginning of
thefile.

Insert the ending tag for the starting tag you
are typing, putting the ending tag on the cur-
rent line.

Insert the ending tag for the starting tag you
are typing, putting the ending tag on a sepa-
rate line.

Finish the current element.

Mark the current paragraph.

Move forward one paragraph.

Move back one paragraph.

Move back one element.

Move forward one element.

Move down one element (if nested).
Move up one element (if nested).

252 | Chapter8: Markup Language Support

Using psgml Mode

Lennart Stafflin’s psgml mode has been around for a while. It is more robust than
Emacs’s own SGML mode, but, like any add-on, you have to install it in order to
use it. Either install TEI Emacs as described earlier or download psgml mode from
http://www.lysator.liu.se/projects/about_psgml.html and follow the installation
instructions there. TEI Emacs includes a functioning psgml mode, so if you’ve
installed TEI Emacs, your setup work is done.

psgml mode consists of two parts: sgml-mode for writing SGML and xml-mode for
writing XML (and in our case XHTML).

To start psgml mode to edit our XHTML file, type M-x xml-mode.

/homefdeb/dickens.html
File Edit Options Buffers Tools XML/SGML Modify Move Markup View DTD X5LT Help

DExEHE I EDHRE XE

[E Butnl smlos="http: /e w3, org/1999 dtml" »
J <head:

<titlerd Tale of Two Cities</title:

¢ /headr

<hodys

<hl:a Tale of Two Cities</hl:

<h2:I

THE FERIOD

</hZs

¥ <p>
--:-- dickens.html Top (1.0) B A e e 1
External entity html not found

z
-u:*+ *SEML LOG* A1T (2,0 (IPEREENETEEIL) so==—ssssossssmmosoemsommee e |
J¥ Fontifying. ..done

XML appears on the mode line and an *SGML LOG* window opens. If you are using
TEI Emacs, XSLT appears on the mode line along with XML.

The *SCML LOG* window displays messages about this session. (If it doesn’t appear
immediately, click on the first character in the file.) The log buffer complains that it
could not find an external entity called html. This file has been changed to work with
the XHTML RELAX NG schema. psgml mode expects it to conform to an XHTML
DTD. To get started with the (minimal) work needed to undertake the transformation
from a schema-based file to a DTD-based file, we ask psgml to normalize the bulffer.

WritingXML | 253

Type: M-x sgml-normalize or select Normalize from the Modify menu

/homefdeb/dickens.html

File Edit Options Buffers Tools XML/SGML Modify Move Markup View DTD X5LT Help

DExHEAS $BDHRE XE

Bhinl:
E <head:

<titlerd Tale of Two Cities</title:

< /head:>

<hody>

<hl»a Tale of Two Cities</hl:

<h2:I

THE FERIOD

</l

<pr

——.** dickens.htwl Top (1,0} (ML, HSLT Fill)———--———m—mmmmmm oo oo 9
External entity html not found

z
-u:*+ *SEML LOG* A1T (2,0 (IPEREENETEEIL) s===—s—ssossssemss e e |

J¥ Done

psgml mode eliminates the namespace declaration in the <html> tag.

More needs to be done, however. The first statements in an XHTML file include
an XML statement and a DOCTYPE entry that identifies the DTD this document
should be validated against. One of the nice things about TEI Emacs is that it
includes a variety of DTDs. (Users of standard psgml mode don’t have this fea-
ture; sorry.")

* A straightforward introduction to setting up a complete environment for psgml mode can be found at http://
openacs.org/doc/openacs-5-0-0/psgml-mode.html.

254 | Chapter8: Markup Language Support

At the beginning of the file, select DTD — Insert DTD — XHTML Transitional.

/home/deb/dickens.html
File Edit Options Buffers Tools XMML/SGML Modify hMove Markup View DTD XSLT Help

DExHE S $ 0hRE XO

g <7l wersion="1.0"7:
J <|DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1. 0 Transitional//EH"
" st local /TETL/tei-emacs SmlAdtds Sdhtml Shtnll-transitional. ded" []»
<htmlx
<head:
ctitlerh Tale of Two Cities</titler</head:
{ <hodys
-&um:** dickems.htwl Top (1,0} (3L XSLT Fill)—-——--————-——mmmm oo z|
External entity html not found
ad
-u: %+ *SGML LOG* a1l (2, 0) (Fundamental) -—-—-—-—-————————— -~

J¥ menu-bar dtd insert dtd xhtml transitional

Emacs inserts the two required elements for us.

That’s all it takes to make this file a well-formed XHTML file. psgml mode allows for
validation against the DTD. Let’s validate it using C-c C-v to make sure it’s okay.

Type: C-c C-v

/home/deb/dickens.html
File Edit Options Buffers Tools XMLASGML Modify MMove Markup Yiew DTD XSLT Help

DExHE S $ b8 XT

<%l version="1.0"7>
J <IDOCTYPE htwl PUBLIC "-//W3C//DTD ¥HIML 1.0 Transitiomal//EN"
" fusrflocal f TEI/ tei-emacs/xnl fdtds/ xhtml fahtml]l-transitional .dtd" []>

<html:
chead:
¢titlesh Tale of Two Cities</titles</head>
¥ <bodys
-&um:** dickems.htwl Top (7, 6) (¥ML ESLT Fill)-—-——--————-—ommmm oo z|

External entity html not found

—u: ¥t *EGML LOG* a11 (2, 0% (Fundamental) ——————————————— -~
J¥ validate command: >mllint --noout --walid dickens.html[]

psgml mode inserts the default validate command in the minibuffer; press Enter to

run it.

WritingXML | 255

Press Enter and type y to save the buffer when prompted

/homefdeb/dickens.html
File Edit Options Buffers Tools XML/ASGML Modify Move Markup View DTD X5LT Help

DExEHEAS $EBHRE XE

B2anl version="1.0"2>

< |DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
J " fsrflocal /TEL tei-emacs sml/dtds shtml Axhtmll-transitional. ded" []»

<html:

<head:

<titlerh Tale of Two Cities</titles< /head:

<hody:

<hl:A Tale of Two Cities</hl:

<h2:I

THE PERIOD
< /hs
—ui—- dickens.htwl Top (L, M P T e B
Hd /homesdebs # -*-compilation-*-
Entering directory * /home/dekb/"
xmllint --noout --valid dickens. html

at Sat Augy T 16:08:12

¥
-u:** *compilatiom* A1l (1,00 (Compilation:exit [0])----—-----—-—--————--—o

IY

The *compilation* buffer indicates (somewhat cryptically) that the document is

valid.

Of course, typical documents are far more complex than this one. Options on the
View menu provide selective hiding and showing of elements, including an option to
hide all tags, allowing you to focus on the content of the file instead.

psgml mode also offers numerous options. If you are running TEI Emacs, you’ll find
the File Options and User Options submenus on the XML/SGML menu. If you've
installed psgml mode standalone, you’ll find them on the SGML menu. Table 8-8
summarizes some of the psgml commands.

Table 8-8. Bindings in psgml mode

Keystrokes Command name Action

(-M-Space sgml-mark-element Mark the current element.

M-Tab sgml-complete Complete the current tag.

M-t sgml-transpose-element Transpose two elements.

C-M-h sgml-mark-current-element Mark the current element.

M-k sgml-kill-element Delete the current element (and any child ele-
Modify — Kill Element ments).

C-M-u sgml-backward-up-element Move up to the parent element for this ele-
Move — Backward Up Element ment.

M- sgml-down-element Move down to the next child element.
Move — Down Element

256 | Chapter8: Markup Language Support

Table 8-8. Bindings in psgml mode (continued)

Keystrokes

C-M-b

Move — Backward Element
-M-f

Move — Forward Element
(C-M-e

Move — End of Element
(-M-a

Move — Beginning of Element
C-cCw

SGML — What Element

C-cCv
SGML — Validate

CcCt

SGML — List Valid Tags
CcCq

Modify — Fill Element
CcCo

Move — Next Trouble Spot
CcCn

Move — Up Element

C-c Enter

CcCl

SGML — Show/Hide Warning Log
CcCk

Modify — Kill Markup
Cc/

Markup — End Current Element
C-c-

Modify — Untag Element
C-c#

Modify — Make Character
Reference

CcCfCe

View — Fold Element
CcCuCe

View — Unfold Element
CGcCfCs

View — Fold Subelement
CGcCfCr

View — Fold Region

Command name

sgml-backward-element
sgml-forward-element
sgml-end-of-element
sgml-beginning-of-element

sgml-what-element

sgml-validate

sgml-list-valid-tags
sgml-fill-element
sgml-next-trouble-spot
sgml-up-element

sgml-split-element

sgml-show-or-clear-log
sgml-kill-markup
sgml-insert-end-tag
sgml-untag-element

sgml-make-character-reference

sgml-fold-element
sgml-unfold-element
sgml-fold-subelement

sgml-fold-region

Action
Move to the previous element.

Move to the next element.
Move to the end of the current element.

Move to the beginning of the current ele-
ment.

Similar to sgml-position but describes hierar-
chy in terms of tags versus content (for exam-
ple, start-tag in title in head in html).

Insert validation command in the minibuffer
s0 you can modify it if necessary before press-
ing Enter to execute it.

List tags that are valid in the current context.

Fill element according to the mode’s indenta-
tion rules.

Find the next problem spot and display the
problem in the minibuffer.

Move to the parent element.

Split current element.

Display or delete the SGML LOG buffer
(menu option name is misleading).

Delete current tag.
Insert closing tag for current tag.
Delete the current tag pair.

Change character under the cursor to the
equivalent entity.

Hide the current element and its children if
any.

Show the current element and its children if
any.

Hide subelements.

Hide the region.

Writing XML | 257

Table 8-8. Bindings in psgml mode (continued)

Keystrokes Command name Action
CcCuCa sgml-unfold-all Show all hidden tags and text.
View — Unfold All

Marking up Text for TEX and IATEX

GNU Emacs provides excellent support for marking up TEX files. Most people today
use [ATEX, which is written in TEX and provides more control over formatting. As a
result, we’ll talk about LaTeX mode here.

Before we launch into this discussion, we assume that you have set up IATEX on your
platform. On Red Hat Linux, it’s set up by default. Windows and Mac OS X users
must install and configure IATEX before proceeding.”

Emacs attempts to guess whether you're editing a TEX or IATEX file and enter the
appropriate mode. You can force LaTeX mode if Emacs doesn’t enter it automati-
cally by typing M-x latex-mode Enter.

Matching Braces

[ATEX commands often take the form \keyword{text}. LaTeX mode doesn’t try to
figure out if you’re using the “right” keywords since the language is extensible and
you may have defined your own keywords. It does, however, provide support for
avoiding the most common error: mismatched curly braces and dollar signs.

In TATEX, curly braces ({}) and dollar signs ($$) should always appear in pairs;
Emacs checks to make sure that each opening brace or dollar sign has a counterpart.
When you type a closing brace or dollar sign, the cursor moves quickly to its coun-
terpart (provided that it is on the screen; it shows the context in the minibuffer if it is
not), then back again.

Emacs generates braces in matching pairs. The command C-c { inserts opening and
closing braces and positions the cursor for typing between the braces.

Typing C-c } moves you past the right brace. It always finds the correct closing brace,
given your current position. If there is no closing brace, you get an error message that
says Scan error: Unbalanced parentheses. You also get this error message if you type
C-c } while the cursor is in a section that is not surrounded by braces, which can be a
little confusing.

* TEI Emacs, mentioned earlier in this chapter, automatically sets up the environment for you and adds more
features including Auctex, a complete authoring environment that supports many TEX variants as well as
bibcite/bibtex for generating bibliographies. However, LaTeX mode under TEI Emacs appears to be a differ-
ent beast from Emacs LaTeX mode, and we do not describe it here.

258 | Chapter8: Markup Language Support

To check for mismatched curly braces and dollar signs, type M-x tex-validate-buffer
Enter. This command checks the entire buffer for unbalanced parentheses, curly
braces, dollar signs, and the like. (If you have a large file, you might want to validate
a region instead using M-x tex-validate-region Enter). If it finds any errors, Emacs
displays an *0ccur* buffer with Mismatches: at the top and a list of lines on which it
found errors. You can then easily move to each line that contains an error with M-x
goto-line.

Sometimes a mismatched parenthesis early in the buffer can start a chain reaction of
“errors” through the rest of the file. If you suspect that one of the corrections you
make may have fixed most of the remaining errors, simply run tex-validate-buffer
again.

When you’re stepping through errors, C-c } provides a good way to check where the
closing brace for a given opening brace is. Position the cursor right after the opening
brace and press C-c }.

Quotation Marks and Paragraphing

LaTeX mode also has features for handling quotation marks and paragraph separa-
tion. Typing a quotation mark (") causes Emacs to simulate left and right quotation
marks. Left quotation marks are represented as two backtick characters (**) while
right quotation marks are represented as two apostrophes ("'). (Left and right quota-
tion marks are not part of the standard ASCII character set.) If you need to type a lit-
eral quotation mark for any reason, simply use the quote-character command
preceding the quotation mark, like this: C-q".

Command Pairs

LaTeX mode provides support for inserting command pairs. To insert a command
pair, type C-c C-o (for latex-insert-block). Emacs prompts for the block name, and
then for associated options. For example, type C-c C-o Enter document Enter Enter
(the second Enter indicates no options). Emacs inserts the command pair and posi-
tions the cursor between them:

\begin{document}

\end{document}

You can use this command to mark up a text file after you write it. If you mark a
region, you can type C-c C-o to wrap a command pair around that region.

A related command is C-c C-e (for latex-close-block). In this case, you type an open-
ing command, press C-c C-e, and Emacs inserts the corresponding closing command.

These commands work with any keyword, regardless of what it is. Emacs can’t check
to make sure that it’s a valid LATEX keyword or even that it’s been defined. For exam-

Marking up Text for TEXand LATEX | 259

ple, if you type \begin{eating} C-c C-e, Emacs inserts \end{eating}. It’s up to you to
make sure you use valid keywords.

Processing and Printing Text

In addition to marking up files for IATEX you can process files, see your errors (if any),
and invoke a viewer, all without leaving Emacs. To process a file, just type C-c C-f (for
tex-file).” Emacs saves the file before processing it. Messages that would appear on
screen are channeled to a buffer called *tex-shell*, which Emacs displays on your
screen. If the buffer isn’t on the screen, typing C-c C-1 (for tex-recenter-output-buffer)
automatically displays it.

To demonstrate, let’s try processing dickens.tex, a very basic file indeed.

Type: C-c C-A

emacs®@ localhost.localdomain
File Edit Options Buffers Tools Tex Help

DExEHE 808 XD

I Pdocumentclass[12pt] {article}

“begin{document}

“large

A Tale of Two Cities

--:-- dickens.tex Top L1 (LaTe}) —————————————————————————————— 4
(fusr/share/texmf /texs/latex/base/s1zel? clod) (dickens. aux) [1] {dickens. @

Saux) 0

Output written on dickens. dvi (1 page, 1176 hytes).
_I,’ Transcript written on dickens. log.

3
-11:** *tex-shell* Bot L13 (TeX-5hell:run Shell-Compile)-—--------——————-
[¥ Parsing error messages. ..

Processing a IATEX file displays a special *tex-shell* buffer.

This command generates a .dvi file, which is an intermediate, device-independent
file. You can view the resulting file by typing C-c C-v. On Linux, the default viewer is
xdvi. Pressing C-c C-v displays the output in an xdvi window.

* If you don’t have your TEX environment set up properly (and it isn’t by default on Mac OS X, for example),
this command hangs or crashes Emacs (pressing C-g may help; in one author’s case it did and in another’s
itdidn’t). Try the latex command at a shell prompt to see if the command exists before attempting to process
a file using Emacs.

260 | Chapter8: Markup Language Support

Type: C-cC-v

hd Xdvi: dickens

A Tale of Two Cities
|
THE PERIOD

It wis the best ol times, ib was the worst of s, 1L was the
age ol wisdom, it was the sge of foolishuess, it was the epoch
al beliel, it was the epoch of inevedulity, it was the season of
Light. it was the season of Dackness. it was the spring of hope, 100%
vy thing before us. we had
divert to Heaven, we were B0%

it was the winter of despair, we had
nothing belore us, we were all going

all going divert the other way—inshort, Lhe period was so lar like
the present period. that some of its noisiest authorities insisted 33
on its being received, Tor good or for evil, in the superlative

degree of com parison only.

257

Output displayed by xdvi.

To print the .dvi file, give the command C-c C-p (for tex-print); this formats the .dvi
file and sends it to your default printer. C-c C-q (tex-show-print-queue) displays the
print queue so you know when to go to the printer to look for your processed output.

Two important variables tell Emacs how to print a TEX, file. You need to know about
them if C-c C-p or C-c C-q doesn’t work correctly; if these commands don’t work,
the configuration of TEX, on your system may be nonstandard, or the print and print
queue commands are slightly different. The variable tex-dvi-print-command deter-
mines the command that is used to print a .dvi file; its default is lpr -d. For print
queues, the command used to show the print queue is controlled by the tex-show-
queue-command variable. By default, tex-show-queue-command is set to lpq.

Table 8-9 summarizes TeX and LaTeX mode commands.

Table 8-9. TeX and LaTeX mode commands

Keystrokes
(none)
(none)
(none)

G

Ccf

Command name
tex-mode
plain-tex-mode
latex-mode
tex-terminate-paragraph

tex-insert-braces

Action

Enter TeX or LaTeX mode according to file’s contents.
Enter TeX mode.

Enter LaTeX mode.

Insert two hard returns (standard end of paragraph)
and check syntax of paragraph.

Insert two braces and put cursor between them.

Marking up Text for TEXand LATEX | 261

Table 8-9. TeX and LaTeX mode commands (continued)

Keystrokes
Cc}

(none)
TeX — Validate Buffer

(none)
TeX — Validate Region

CcCf
TeX — TeX File

CcCh
TeX — TeX Buffer

CcCl
TeX — TeX Recenter

CcCk
TeX — TeX Kill

CGcCp
TeX — TeX Print

CcCq
TeX — Show Print Queue

CcCe
(none)

C-cTab’
TeX — BibTeX File

C-cCv
TeX — TeX View

(none)
TeX — TeX Print (alt printer)

C-cCo
C-cCu

M-Enter
(none)

Command name

up-list

tex-validate-buffer
tex-validate-region
tex-file

tex-buffer
tex-recenter-output-buffer
tex-kill-job

tex-print
tex-show-print-queue

latex-close-block
tex-close-latex-block
tex-bibtex-file

tex-view
tex-alt-print
latex-insert-block

tex-goto-last-unclosed-
latex-block

latex-insert-item
latex-split-block

tex-insert-quote

Action

If you are between braces, position the cursor follow-
ing the closing brace.

Check buffer for syntax errors.

Check the region for syntax errors.
Saves the current file, then processes it.
Process buffer.a

Put the message shell on the screen, showing (at
least) the last error message.

Kill processing.
Print output.
Show print queue.

Provide closing element of a command pair.
Provide closing element of a command pair.

Process the current file using BibTeX, a system for cre-
ating bibliographies automatically.

View .dvi output.

Print.dvi file using an alternative printer defined by
the variable tex-alt-dvi-print-command.

Insert a block (prompts for block name and options).

Look backward in the file to find the nearest unclosed
block and move the cursor there.

Insert \item.

Insert an end to the current block and the beginning
of anew one.

Insert TeX-style quotation marks.

a Using tex-buffer gives the resulting .dvi file a long and strange filename that includes your domain name.
We recommend using C-c C-f (for tex-file) instead.

262 | Chapter8: Markup Language Support

CHAPTER 9
Computer Language Support

As many programmers know, the task of programming usually breaks down into a
cycle of think-write-debug. If you have used Unix (or various other operating sys-
tems) for programming, you have probably become accustomed to using separate
tools for each phase of the cycle, for example, a text editor for writing, a compiler for
compiling, and the operating system itself for running programs. You would
undoubtedly find an environment much more productive if the boundaries between
the cycle phases—and the tools that support them—were erased.

Emacs provides considerable support for writing, running, and debugging pro-
grams written in a wide variety of languages, and it integrates this support into a
smooth framework. You never have to leave Emacs when developing programs, so
you will find it easier to concentrate on the actual programming task (i.e., the
“think” part of the cycle) because you won’t have to spend lots of time going from
one tool to another.

When you write code, you can use one of Emacs’s programming language modes;
these turn Emacs into a spiffy syntax-directed or language-sensitive editor that
knows about the syntax of the language. That makes it easier for you to write code in
a uniform, easy-to-read, customizable style. Language modes exist for several differ-
ent programming languages.

Emacs also supports running and debugging programs. Shell mode (see Chapter 5)
and multiple windows (see Chapter 4) allow you to run your code while editing it.
Emacs has a powerful facility for interfacing to many compilers and the Unix make
command: Emacs can interpret compilers’ error messages and visit files where
errors occur at the appropriate line number. Indeed, many tools (such as the Java
build tool, ant) include command-line options to format their output in an Emacs-
friendly way.

In this chapter, we cover the features of language modes in general such as compil-
ing and debugging programs, comments, indentation, and syntax highlighting. We
also spend a bit of time upfront looking at the etags facility, which is a great help to

263

programmers who work on large, multifile projects. These features apply to all lan-
guage modes. We then delve into Emacs’s support for various languages, including
C, C++, Java, Perl, SQL, and Lisp.

Emacs as an IDE

Emacs provides a number of features that appeal to developers. You can edit code
quickly with font support and auto-completion of function and variable names; you
can compile the program and even run a debugger all without leaving your “editor.”
While you don’t have some of the graphical tools commonly found in commercial
integrated development environments (IDEs), almost every other feature of those
IDEs can be found in Emacs—for every language you could imagine working in.

Of course, there will always be occasions when you need to view your documents
without the bells and whistles some language modes attach. You can always switch
to plain text (M-xtext-mode) or, more to the point, fundamental mode
(M-x fundamental-mode).

Compiling and Debugging

As mentioned at the beginning of this chapter, Emacs’s support for programmers
does not end when you are done writing the code. A typical strategy for using Emacs
when working on a large programming project is to log in, go to the directory where
your source files reside, and invoke Emacs on the source files (e.g., emacs Makefile
myproj*.[ch] for C programmers). While you are editing your code, you can compile
it using the commands described later—as you will see, you need not even worry
about saving your changes. You can also test your compiled code in a shell using
shell mode (see Chapter 5). The bottom line is that you should rarely—if ever—have
to leave Emacs throughout your session.

Emacs provides an interface to compilers and the Unix make utility that is more
direct and powerful than shell mode. At the heart of this facility is the command M-x
compile Enter. This command causes a series of events to occur. First, it prompts
you for a compilation command. The default command is make -k,” but if you type
another command, that new command becomes the default for subsequent invoca-
tions during your Emacs session. You can change the default by setting the variable
compile-command in your .emacs file. For example, to use the Java build tool ant as
your default compile command, just add this line:

(setq 'compile-command "ant -emacs")

* The -k option overrides make’s default of stopping after a job returns an error. Instead, make continues on
branches of the dependency tree that do not depend on the branch where the error occurred.

264 | Chapter9: Computer Language Support

After you have typed the command, Emacs offers to save all unsaved file buffers,
thus relieving you of the responsibility of making sure your changes have been saved.
It then creates a buffer called *compilation* and an associated window. It runs the
compilation command (as a subprocess, just like the shell in shell mode), with out-
put going to the *compilation* buffer. While the command runs, the minibuffer says
Compiling: run; it says exit when the compile job finishes.

Now the fun begins. If the compilation resulted in an error, you can type C-x " (for
next-error; this is a backquote, not a single quote). Emacs reads the first error mes-
sage, figures out the file and line number of the error, and visits the file at that line
number. After you have corrected the error, you can type C-x * again to visit subse-
quent error locations. Each time you type C-x*, Emacs scrolls the *compilation* win-
dow so that the current error message appears at the top.

To start at the first error message again, type C-x * with a prefix argument (i.e., C-u
C-x 7). A nice thing about C-x " is that you can use it as soon as an error is encoun-
tered; you do not have to wait for the compilation to finish.

The mode of the *compilation* buffer (compilation mode) supports a few other use-
ful commands for navigating through the error messages as summarized in Table 9-1.

Table 9-1. Compilation mode commands

Keystrokes Command name Action

x* next-error Move to the next error message and visit the corre-
sponding source code.

M-n compilation-next-error Move to the next error message.

M-p compilation-previous-error Move to the previous error message.

C-cCc compilation-goto-error Visit the source code for the current error message.

Space scroll-down Scroll down one screen.

Del scroll-up Scroll up one screen.

Space and Del are handy screen-scrolling commands found in various read-only
Emacs modes.

Note that M-n and M-p do not visit the source code corresponding to the error mes-
sage; they simply allow you to move easily through error messages that may take up
more than one line each. However, you can visit the source code from any error mes-
sage by typing C-c C-c.

How does Emacs interpret the error message? It uses the variable compilation-error-
regexp-alist, which is a list of regular expressions designed to match the error mes-
sages of a wide variety of C and C++ compilers and the lint C code checking program.”
It should also work with compilers for languages for which Emacs has language modes,

* Unfortunately, Emacs won’t understand error messages generated by make itself, such as those due to syntax
errors in your Makefile.

EmacsasanIDE | 265

such as Java, Fortran, Ada, and Modula-2. Emacs tries to parse (analyze) an error mes-
sage with each of the regular expressions in the list until it finds one that extracts the
filename and line number where the error occurred.

There is a chance that the error message parser won’t work with certain compilers,
especially if you are using Emacs on a non-Unix system. You can find out by trying
M-x compile on some code that you know contains an error; if you type C-x °, and
Emacs claims that there are no more errors, the next-error feature does not work
with your compiler.

If the parser doesn’t work for you, you may want to try adding a regular expression
to compilation-error-regexp-alist that fits your compiler’s error message format.
We'll show you an example of this in Chapter 11.

The compile package also includes similar support for the Unix grep (search files)
command, thus effectively giving Emacs a multifile search capability. If you type M-x
grep, you are prompted for arguments to send to grep—that is, a search pattern and
filename(s). Emacs runs grep with the -n option, which tells it to print filenames and
line numbers of matching lines.” The same happens as with M-x compile; you can
type C-x " to have Emacs visit the next matched line in its file.

Writing Code

We have already seen various examples of Emacs modes, including text mode (see
Chapter 2) and shell mode (see Chapter 5). Special functionality like the buffer list
(see Chapter 4) and Dired (see Chapter 5) are actually modes as well. All modes have
two basic components: an Emacs Lisp package that implements the mode and a func-
tion that invokes it.

Language Modes

The version of Emacs on which this book is based (21.3.5) comes with language
modes for Ada, assembly, awk, C, C++, Common Lisp, Fortran, ICON, Java, Lisp,
MIM, Modula-2, Objective-C, Pascal, Pike, Perl, PROLOG, Python, Scheme, SGML,
Simula, and SQL; future versions will undoubtedly add more. Many—but not all
of the language modes are “hooked” into Emacs so that if you visit a file with the
proper filename suffix, you will automatically be put in the correct mode. To find
out whether Emacs does this for the language you use, look up your language in the
table of Emacs Lisp packages in Appendix B. If one or more suffixes is listed in the
right-hand column, Emacs invokes the mode for files with those suffixes.

* If grep -n is run on only one file, it just prints line numbers; Emacs forces it to print the filename as well in
this case by appending the dummy file /dev/null to the grep command.

266 | Chapter9: Computer Language Support

However, if no suffix is listed (or if your compiler supports a different suffix than the
ones listed), you can set up Emacs to invoke the mode automatically when you visit
your source files. You need to do two things: first, look again at the right-hand col-
umn in the package table entry for your language, and you will find the name of the
function that invokes the mode (e.g., ada-mode, modula-2-mode). Second, you
insert code in your .emacs file that tells Emacs to automatically load the proper pack-
age whenever you visit a file with the suffix for the language in question.

You need to write two lines of code for this customization. The first uses the auto-
load function, which tells Emacs where to look for commands it doesn’t already
know about. It sets up an association between a function and the package that
implements the function so that when the function is invoked for the first time,
Emacs loads the package to get the code. In our case, we need to create an associa-
tion between a function that invokes a language mode and the package that imple-
ments the mode. This shows the format of autoload:

(autoload 'function "filename" "description t)

Note the single quote preceding function and the double quotes around filename
and description; for more details on this Lisp syntax, see Chapter 11. If you are a
PHP programmer, for example, you can grab the latest Emacs PHP mode from http://
sourceforge.net/projects/php-mode/ online. You would then put the following line in
your .emacs file:

(autoload 'php-mode "php-mode" "PHP editing mode." t)

This tells Emacs to load the PHP package when the function php-mode is invoked
for the first time.

The second line of code completes the picture by creating an association between the
suffix for source files in your language and the mode-invoking function so that the
function is automatically invoked when you visit a file with the proper suffix. This
involves the Emacs global variable auto-mode-alist, covered in Chapter 10; it is a list
of associations that Emacs uses to put visited files in modes according to their
names. To create such an association for PHP mode so that Emacs puts all files with
the suffix .php in that mode, add this line to your .emacs file:

(setq auto-mode-alist (cons '("\\.php$" . php-mode) auto-mode-alist))

This Lisp code sets up the following chain of events when you visit a file whose suf-
fix indicates source code in your programming language. Let’s say you visit the file
pgm.php. Emacs reads the file, then finds an entry corresponding to the .php suffix in
the auto-mode-alist and tries to invoke the associated function php-mode. It notices
that the function php-mode doesn’t exist, but that there is an autoload association
between it and the PHP package. It loads that package and, finding the php-mode
command, runs it. After this, your buffer is in PHP mode.

Writing Code | 267

For some interpreted languages like Perl and Python, you will also want to update
the interpreter-mode-alist global variable:
(setq interpreter-mode-alist
(cons '("python" . python-mode)
interpreter-mode-alist))

If your script file begins with the Unix interpreter prefix #!, Emacs checks that line
to determine what language you are using. That can be especially helpful when the
script file does not have a telltale extension like .py or .pl.

Syntax

Although language modes differ in exact functionality, they all support the same
basic concepts. The most important of these involves knowledge of the syntax of the
language in question—its characters, vocabulary, and certain aspects of its gram-
mar. We have already seen that Emacs handles some syntactic aspects of human lan-
guage. When you edit regular text, Emacs knows about words, sentences, and
paragraphs: you can move the cursor and delete text with respect to those units. It
also knows about certain kinds of punctuation, such as parentheses: when you type a
right parenthesis, it “flashes” the matching left parenthesis by moving the cursor
there for a second and then returning.” This is a convenient way of ensuring that your
parentheses match correctly.

Emacs has knowledge about programming language syntax that is analogous to its
knowledge of human language syntax. In general, it keeps track of the following
basic syntactic elements:

* Words, which correspond to identifiers and numbers in most programming
languages.

* Punctuation, which includes such things as operators (e.g., +, -, <, and >) and
statement separators (e.g., semicolons).

* Strings, which are strings of characters to be taken literally and surrounded by
delimiters (such as quotation marks).

* Parentheses, which can include such things as square brackets ([and]) and curly
braces ({ and }) as well as regular parentheses.

» Whitespace, such as spaces and tabs, which are to be ignored.

* Comments, which are strings of characters to be ignored and surrounded by

delimiters that depend on the language (e.g., /* and */ for C, // and a newline for
C++ and Java, or semicolon (;) and a newline for Lisp).

*

Actually, there is a limit to how far back (in characters) Emacs searches for a matching open parenthesis: this
is the value of the variable blink-matching-paren-distance, which defaults to 25,600. The duration of the
“flash” is also configurable: it’s the value (in seconds) of blink-matching-delay, whose default value is 1.

268 | Chapter9: Computer Language Support

Emacs keeps this information internally in the form of syntax tables; like keymaps (as
described in Chapter 10), Emacs has a global syntax table used for all buffers, as well a
local table for each buffer, which varies according to the mode the bulffer is in. You can
view the syntax table for the current buffer by typing C-h s (for describe-syntax). In
addition, language modes know about more advanced language-dependent syntactic
concepts like statements, statement blocks, functions, subroutines, Lisp syntactic
expressions, and so on.

Comments

All programming languages have comment syntax, so Emacs provides a few features
that deal with comments in general; these are made language-specific in each lan-
guage mode. The universal comment command for all language modes is M-; (for
indent-for-comment).” When you type M-;, Emacs moves to a column equal to the
value of the variable comment-column; if the text on the line goes past that column,
it moves to one space past the last text character. It then inserts a comment delimiter
(or a pair of opening and closing delimiters, as in /* and */ for C) and puts the cursor
after the opening delimiter.

For example, if you want to add a comment to a statement, put the cursor anywhere
on the line containing that statement and type M-;. The result is

result += y; /* I*/

You can then type your comment in between the delimiters. If you were to do the
same thing on a longer line of code, say,

q_i = term_arr[i].num docs / total docs;
the result would be
q_i = term arr[i].num docs / total docs; /* I*/

You can customize the variable comment-column, of course, by putting the appro-
priate code in your .emacs file. This is the most useful way if you want to do it per-
manently. But if you want to reset comment-column temporarily within the current
buffer, you can just move the cursor to where you want the comment column to be
and type C-x ; (for set-comment-column). Note that this command affects only the
value of comment-column in the current buffer; its value in other buffers—even
other buffers in the same mode—is not changed.

When you are typing a comment and want to continue it on the next line, M-j (for
indent-new-comment-line) does it. This command starts a new comment on the next
line (though some language modes allow you to customize it so that it continues the

* The key binding is mnemonic for Lisp programmers because comments in Lisp start with semicolons.

Writing Code | 269

same comment instead). Say you have typed in the text of the comment for this state-
ment, and the cursor is at the end of the text:

result += y; /* add the multiplicandl*/
You want to extend the comment to another line. If you type M-j, you get the following:
result += y; /* add the multiplicand*/
/W
You can type the second line of your comment. You can also use M-j to split exist-
ing comment text into two lines. Assume your cursor is positioned like this:

result += vy; /* add thelmultiplicand */
If you type M-j now, the result is:

result += y; /* add the */
/* Hultiplicand */
If you want to comment out a section of your code, you can use the comment-region
command (not bound to keystrokes except in certain language modes). Assume you
have code that looks like this:
this = is (a);
section (of, source, code);

that += (takes[up]->a * number);
of (lines);

If you define a region in the usual way and type M-x comment-region, the result is:

/* this = is (a); */

/* section (of, source, code); */

/* that += (takes[up]->a * number); */

/* of (lines); */
You can easily get rid of single-line comments by typing M-x kill-comment Enter,
which deletes any comment on the current line. The cursor does not have to be
within the comment. Each language mode has special features relating to comments
in the particular language, usually including variables that let you customize com-
menting style.

Indenting Code

In addition to syntactic knowledge, Emacs language modes contain various features
to help you produce nicely formatted code. These features implement standards of
indentation, commenting, and other aspects of programming style, thus ensuring
consistency and readability, getting comments to line up, and so on. Perhaps more
importantly, they relieve you of the tiresome burden of supplying correct indenta-
tion and even of remembering what the current indentation is. The nicest thing
about these standards is that they are usually customizable.

We have already seen that, in text mode, you can type C-j instead of Enter, at the
end of a line, and Emacs indents the next line properly for you. This indentation is

270 | Chapter9: Computer Language Support

controlled by the variable left-margin, whose value is the column to indent to. Much
the same thing happens in programming language modes, but the process is more
flexible and complex.

As in text mode, C-j indents the next line properly in language modes. You can also
indent any line properly after it has been typed by pressing Tab with the cursor any-
where on the line.

Some language modes have extra functionality attached to characters that terminate
statements—like semicolons or right curly braces—so that when you type them,
Emacs automatically indents the current line. Emacs documentation calls this behav-
ior electric. Most language modes also have sets of variables that control indentation
style (and that you can customize).

Table 9-2 lists a few other commands relating to indentation that work according to
the rules set up for the language in question.

Table 9-2. Basic indentation commands

Keystrokes Command name Action

M- indent-region Indent each line between the cursor and mark.
M-m back-to-indentation Move to the first nonblank character on the line.
M-A delete-indentation Join this line to the previous one.

The following is an example of what C-M-\ does. This example is in C, and subse-
quent examples refer to it. The concepts in all examples in this section are applicable
to most other languages; we cover analogous Lisp and Java features in the sections
on modes for those languages.

Suppose you have the following C code:

int times (x, y)
int x, y;

{

int i;

int result = 0;

for (i = 0; 1 < x; i++)
{

result += y;
}
}

If you set mark at the beginning of this code, put the cursor at the end, and type C-M-\,
Emacs formats it like this:

int times (x, y)
int x, y;
{
int i;
int result = 0;

Writing Code | 271

for (i = 0; i < x; i++)
{

result += y;
}
}
C-M-\ is also handy for indenting an entire file according to your particular indenta-
tion style: you can just type C-x h (for mark-whole-buffer) followed by C-M-\.

M-m is handy for moving to the beginning of the actual code on a line. For example,
assume your cursor is positioned like this:

int resulﬂ = 0;
If you type M-m, it moves to the beginning of the int:
nt result = 0;

As an example of M-%, let’s say you want the opening curly brace for the for state-
ment to appear on the same line as the for. Put the cursor anywhere on the line with
the opening curly brace, type M-#, and the code looks like this:
for (i =0; 1< x; i++) {
result += vy;
}

Language modes usually provide additional indentation commands that relate to spe-
cific features of the language. Having covered the general language mode concepts, we
want to show you a few other general utilities: etags and font-lock mode. The etags
facility helps programmers who work on large, multifile programs. All language modes
can also take advantage of font-lock mode to make development more efficient.

etags

Another general feature of Emacs that applies to programmers is the etags facility.”
etags works with code in many other languages as well, including Fortran, Java, Perl,
Pascal, IATEX, Lisp, and many assembly languages. If you work on large, multifile
projects, you will find etags to be an enormous help.

etags is basically a multifile search facility that knows about C and Perl function defi-
nitions as well as searching in general. With it, you can find a function anywhere in
an entire directory without having to remember in which file the function is defined,
and you can do searches and query-replaces that span multiple files. etags uses tag
tables, which contain lists of function names for each file in a directory along with
information on where the functions’ definitions are located within the files. Many of
the commands associated with etags involve regular expressions (see Chapter 11) in
search strings.

*

etags is also a platform-specific feature. The etags facility is available on Unix platforms, including Mac OS X.

272 | Chapter9: Computer Language Support

To use etags, you must first invoke the separate etags program in your current direc-
tory to create the tag table. Its arguments are the files for which you want tag infor-
mation. The usual way to invoke it is etags *.[ch], that is, building a tag table from all
files ending in .c or .h. (That’s for you C programmers; other languages would use
their appropriate extensions, of course.) You can run etags from shell mode or with
the command M-! (for shell-command). The output of etags is the file TAGS, which
is the tag table. When you are writing code, you can update your tag table to reflect
new files and function definitions by invoking etags again.

After you have created the tag table, you need to make it known to Emacs. To do
this, type M-x visit-tags-table Enter. This prompts you for the name of the tag table
file; the default is TAGS in the current directory, as you would expect. After you exe-
cute this step, you can use the various Emacs tags commands.

The most important tag command is M-. (for find-tag). This command prompts you
for a string to use in searching the tag table for a function whose name contains the
string. Supply the search string, and Emacs visits the file containing the matching
function name in the current window and goes to the first line of the function’s defi-
nition. A variation of M-. is C-x 4 . (for find-tag-other-window), which uses another
window instead of replacing the text in your current window.

A nice feature of M-. is that it picks up the word the cursor is on and uses it as
the default search string. For example, if your cursor is anywhere on the string
my_function, M-. uses my_function as the default. Thus, when you are looking
at a C statement that calls a function, you can type M-. to see the code for that
function.

If you have multiple functions with the same name, M-. finds the function in the file
whose name comes first in alphabetical order. To find the others, you can use the
command M-, (for tags-loop-continue) to find the next one (or complain if there are
no more). This feature is especially useful if your directory contains more than one
program, that is, if there is more than one function called main. M-, also has other
uses, as we will see.

You can use the tag table to search for more than just function definitions. The com-
mand M-x tags-search Enter prompts for a regular expression; it searches through all
files listed in the tag table (such as, all .c and .h files) for any occurrence of the regu-
lar expression, whether it is a function name or not. This capability is similar to the
grep facility discussed earlier in this chapter. After you have invoked tags-search,
you can find additional matches by typing M-,.

There is also an analogous query-replace capability. The command M-x tags-query-
replace Enter does a regular expression query-replace (see Chapter 3) on all files
listed in the tag table. As with the regular query-replace-regexp command, if you
precede tags-query-replace with a prefix argument (i.e., C-u M-x tags-query-replace
Enter), Emacs replaces only matches that are whole words. This feature is useful, for

Writing Code | 273

example, if you want to replace occurrences of printf without disturbing occur-
rences of fprintf. If you exit a tags-query-replace with Esc or C-g, you can resume it
later by typing M-,.

The command M-x tags-apropos rounds out the search facilities of etags. If you give
it a regular expression argument, it opens a *Tags List* buffer that contains a list of
all tags in the tag table (including names of files as well as functions) that match the
regular expression. For example, if you want to find out the names of output rou-
tines in a multiple-file C program, you could invoke tags-apropos with the argu-
ment print or write.

Finally, you can type M-x list-tags Enter to list all the tags in the table—that is, all
the functions—for a given C file. Supply the filename at the prompt, and you get a
Tags List buffer showing the names of functions defined in that file along with
their return types (if any). Note that if you move your cursor to this list, you can use
M-. to look at the actual code for the function. M-. picks up the word the cursor is
on as the default function name, so you can just move the cursor to the name of the
function you want to see and press M-. followed by Enter to see it.

Fonts and Font-lock Mode

There’s one last common feature to mention. The use of fonts to help present code is
very popular—so popular, in fact, that it is now universal. Unlike the indentation
and formatting supported by the various language modes, nothing in the code itself
changes. But when you’re in font-lock mode, your program certainly looks different.

You can turn on this feature for any language mode with M-x font-lock-mode to see
for yourself. Keywords get a particular color; comments get a different color and are
often italicized; strings and literals get yet another color. It can aid quick browsing of
code. Many people come to depend on it much the way they rely on proper indenta-
tion. If you become one of those people, you’ll want to make it the default for all lan-
guage sessions. You can add the following line to your .emacs file to achieve this aim:
55 Turn on font-locking globally
(global-font-lock-mode t)
The colors and styles used are customizable if you don’t like the defaults.
M-x list-faces-display produces a list of the named faces Emacs knows about. You’ll
see something similar to the screen shown in Figure 9-1.

Of course, in real life, the colors and bold and whatnot should be more pronounced.
You’ll also see quite a few more faces. You can modify any of those faces with either
M-x modify-face (a simple prompted “wizard” approach) or M-x customize-face
(the big fancy interactive approach). You can also add lines to your .emacs file for
your favorite customizations. Here’s an example:

' (font-lock-comment-face

((((class color) (background light))
(:foreground "Firebrick" :slant italic)))))

274 | Chapter9: Computer Language Support

806 Emacs@fred.loyinc.pvt
DeEexHdR DD REXT

Use <mouse-2> or C-c C-c on o foce nome to customize it
or on its somple text for o description of the foce.

[Buffer-menu-buffer- fuce abcdefghijklmnopgrstuvwxyz ABCDEFGHIJKLMNOPQRSTI>
bold abcdefghijklmnopgrstuvwxyz ABCDEFGHIJKLMNOPQRSTI>
bold-itolic abcdefghi 7k Imnopgrs tuvwxyz ABCDEFGHI I MNOPQRST »

-

border

button obcdefght jklmnopgrstuvweyz ABCDEFGHIJKLMNOPQRS TUVWXYZ
c-nonbreakoble-space-face E
change-log-acknowledgement- face asbcdefghi 7k lmnopgrstuvweyz ABCOEFGHIKLMVOPQRSTL »
change-log-conditionals-face obcodefghijklmnopgrstu ABCDEFGHI JKLMNOPQRS Vi

chaonge- log-date- face obcdefghtjkimnopgrst
change-log-email-face obcdefght Jklmnopgrs tuvi CDOEFGHI JKLMNOPQRS
change-log-file-foce obcdefghijklmnopgrstuvweyz ABCDEFGHIJKLMMNOPQRSTUVWAYZ
change-log- function-face obcdefght Jklmnopgrstuy ABCDEFGHI JKLMNOPQRS TUVWXYZ
change- log-list- foce obcdefghtijkimnopgrstuvweyz ABCDEFGHIJKLMNOPQRSTUWY
change- log-name-face obcdefghijklmnopgrstuvwsyz ABCOEFGHIJKLMMOPQRSTUWVY
comint-highlight-input abcdefghijkimnopgrstuvwiyz ABCDEFGHIJKLMNOPQRSTI>
comint-highlight-prompt obcdefghijklmnopgrstuvweyz ABCDEFGHIJKLMNOPQRS TUVWXYZ
compare-windows- face obcdefghijkimnopgrstuvweyz ABCDEFGHIJKLMNOPQRS TUVWXYZ
compilation-info-face ohodefg q WXy LW 1LES
compi lation-warning- faoce £
completions-common-part abcdefghijklmnopgrstuvweyz ABCDEFGHIJKLMNOPQRSTUVWRYZ

completions-first-difference abcdefghijkimnopgrstuvwxyz ABCDEFGHIJKLMNOPQF>
cursor “ b

--:%%-Fmocs *Foces* Top L4 [(Help View)]--

z ABCDEFC

Figure 9-1. Fonts available for customization in Emacs

Note that not all displays support all of the possible variations of bold, italic, under-
line, colors, and so on. This is a classic case of “your mileage may vary.” Still, with
the ability to customize it all yourself, you should be able to find a combination that
works well on your system.

The remaining sections in this chapter deal with several of the language-specific
modes including JDEE, a suite of packages devoted to the world of Java develop-
ment in Emacs.

You need not read all of these sections if you are interested in only one or two of the
languages. If you program in another language for which Emacs has a mode, you
may want to read one of the following sections to get the “flavor” of a language
mode; all language modes have the same basic concepts, so this should get you off to
a good start. Indeed, many language modes use another mode as a base. For exam-
ple, Java mode is really just an extension of C mode.

Cand (++ Support

Emacs automatically enters C mode when you visit a file whose suffix is .c, .h, .y (for
yacc grammars), or .lex (lex specification files). Emacs invokes C++ mode when you
visit a file whose suffix is .C, .H, .cc, .hh, .cpp, .cxx, .hxx, .c++, or .h++. You can also

Cand C++ Support | 275

put any file in C mode manually by typing M-x c-mode Enter. Similarly, you can use
c++-mode to put a buffer into C++ mode.

Both C and C++ modes are implemented in the same Emacs Lisp package, called cc-
mode,” which also includes a mode for the Objective-C language used in Mac OS X.
C mode understands both ANSI C and the older Kernighan and Ritchie C syntax.
We describe C mode functions, but you should assume that everything also applies
to C++ mode. C++ mode has a small number of additional features, which we
describe at the end of this section.

We should also note that the Emacs mode for Perl is derived from an older version of C
mode. If you program in Perl, you will find that virtually all of the motion, indentation,
and formatting commands in C mode apply equally to Perl mode, with perl- replacing
c- in their names. Emacs invokes Perl mode on files with suffix .pl. (However, to be
honest we prefer CPerl mode, discussed later in this chapter.)

In C mode, Emacs understands the syntax elements described earlier in this chapter.
The characters semicolon (;), colon (), comma (,) curly braces ({ and }), and pound
sign (#, for C preprocessor commands) are all electric, meaning that Emacs automat-
ically indents the current line when you type them. It also actively uses the font
options when you have font-lock mode turned on.

Motion Commands

In addition to the standard Emacs commands for words and sentences (which are
mainly useful only inside multiline comments), C mode contains advanced com-
mands that know about statements, functions,t and preprocessor conditionals. A
summary of these commands appears in Table 9-3.

Table 9-3. Advanced C motion commands

Keystrokes Command name Action

M-a ¢-beginning-of-statement Move to the beginning of the current statement.

M-e c-end-of-statement Move to the end of the current statement.

M-q cfill-paragraph Ifin comment, fill the paragraph, preserving indentations and decorations.
(-M-a beginning-of-defun Move to the beginning of the body of the function surrounding the point.
C-M-e end-of-defun Move to the end of the function.

C-M-h ¢-mark-function Put the cursor at the beginning of the function, the mark at the end.
CcCq c-indent-defun Indent the entire function according to indentation style.

* We know! There is no M-x cc-mode. It can be confusing. Just try to remember that the modes are named
directly after the language they support.

T The function commands have “defun” in their names because they are actually adaptations of analogous
commands in Lisp mode; a defun is a function definition in Lisp.

276 | Chapter9: Computer Language Support

Table 9-3. Advanced C motion commands (continued)

Keystrokes Command name Action

CcCu c-up-conditional Move to the beginning of the current preprocessor conditional.
CGcCp c¢-backward-conditional Move to the previous preprocessor conditional.

CcCn c-forward-conditional Move to the next preprocessor conditional.

Notice that the statement motion commands have the same key bindings as
backward-sentence and forward-sentence, respectively. In fact, they act as sen-
tence commands if you use them within a C comment.

Similarly, M-q is normally the fill-paragraph command; C mode augments it with
the ability to preserve indentations and decorative characters at the beginnings of
lines. For example, if your cursor is anywhere in this comment:

/* This is

* a
* comment paragraph with wildly differing right
* margins.
* It goes on for a while,
* then stops.

typing M-q has this result:

/* This is a comment paragraph with wildly differing right margins.
* It goes on for a while, then stops. */

You will find that the preprocessor conditional motion commands are a godsend if
you have to slog through someone else’s voluminous code. Especially if you’re faced
with code built to run on a variety of systems—Ilike Emacs itself—often the most
important question you need answered is, “What code is actually compiled?”

With C-c C-u, you can tell instantly what preprocessor conditional governs the code
in question. Consider this code block:

#define LUCYX
#define BADEXIT -1

#ifdef LUCYX
*ptyv = open ("/dev/ptc", O_RDWR | O_NDELAY, 0);
if (fd < 0)
return BADEXIT,;
#else

fprintf (stderr, "You can't do that on this system!");

#endif

Imagine that the ellipses (...) represent hundreds of lines of code. Now suppose
you are trying to determine under what conditions the file /dev/ptc is opened. If

Cand C++ Support | 277

your cursor is on that line of code, you can type C-c C-u, and the cursor moves to
the line #ifdef LUCYX—telling you that the code is compiled if you’re on a
LUCYX system. If you want to skip the code that would not be compiled and go
directly to the end of the conditional, type C-c C-n. We will see another command
that is useful for dealing with C preprocessor code later in this section.

C statement and statement block delimiter characters are bound to commands that,
in addition to inserting the appropriate character, also provide proper indentation.
These characters are {, }, ;, and : (for labels and switch cases). For example, if you are
closing out a statement block or function body, you can press C-j (or Enter) and type
}, and Emacs lines it up with its matching {. This eliminates the need for you to scroll
back through the code to find out what column the { is in.

Because } is a parenthesis-type character, Emacs attempts to “flash” a matching {
when you type }. If the matching { is outside of the text displayed in your window,
Emacs instead prints the line containing the { in the minibuffer. Furthermore, if only
whitespace (blanks or tabs) follows the { on its line, Emacs also prints a 2] (for C+j)
followed by the next line, thus giving a better idea of the context of the {.

Recall the “times” example earlier in this chapter. Let’s say you are typing in a } to
end the function, and the { that begins the function body is off-screen. There is no
code on the line following the beginning {, so you see the following in the minibuffer
after you type }:

Matches {*J int i;

Customizing Code Indentation Style

Coding style in C—or any programming language for that matter—is a very per-
sonal thing. C programmers learn from various books or by referring to various dif-
ferent pieces of other people’s code; eventually they evolve a personal style that may
or may not conform to those that they learned from.

C mode provides a rich set of features for customizing its indentation behavior that
mirrors this way of learning the language. At the simplest level, you can choose a
coding style by name. Then, if you’re not satisfied, you can customize your chosen
style or even create your own from scratch. The latter tasks, however, require a fair
amount of Emacs Lisp programming knowledge (see Chapter 11) and perhaps a bit
of bravery.

You can choose a named coding style with the command M-x c-set-style. This com-
mand prompts you for the name of the style you want. The easiest thing to do at this
point is to type Tab, the completion character (see Chapter 14), which brings up a
Completions window that lists all of the choices. Type one of them and press Enter
to select it.

By default, Emacs comes loaded with the styles shown in Table 9-4.

278 | Chapter9: Computer Language Support

Table 9-4. Built-in cc-mode indentation styles

Style Description

bsd Style used in code for BSD-derived versions of Unix.

cc-mode The default coding style, from which all others are derived .

ellemtel Style used in C(++ documentation from Ellemtel Telecommunication Systems Laboratories in Sweden .
gnu Style used in C code for Emacs itself and other GNU-related programs .

java Style used in Java code (the default for Java mode).

k&r Style of the classic text on C, Kernighan and Ritchie’s The C Programming Language .

linux Style used in C code that is part of the Linux kernel.

python Style used in python extensions.

stroustrup (++ coding style of the standard reference work, Bjarne Stroustrup’s The (++ Programming Language .
user Customizations you make to .emacs or via Custom (see Chapter 10). All other styles inherit these customiza-

tions if you set them.

whitesmith Style used in Whitesmith Ltd.’s documentation for their Cand (++ compilers .

To show how some of these styles work, let’s start with the C function example from

earlier in this chapter:

int times (x, vy)
int x, y;

{

int i;

int result = 0;

for (i = 0; i < x; i++)
{

result += vy;
}
}

If you define a region around this code and you type C-M-\ (for indent-region),

Emacs reformats the code in the default style like this:

int times (x, y)

int x, y;
{
int i;
int result = 0;
for (i =0; i< x; i++)
{
result += y;
}
}

If you type C-c . (for c-set-style), enter k&r, and then repeat the reformatting, the

code looks like this:

int times (x, y)

Cand C++ Support | 279

int x, vy;

{
int i;
int result = 0;
for (i = 0; i< x; i++)
{
result += y;
}
}

Or, if you want to switch to GNU-style indentation, choose the style gnu and refor-
mat. The result is:

int times (x, y)
int x, y;
{

int i;
int result = 0;
for (i = 0; i < x; i++)

{

result += y;
}
}
Once you decide on a coding style, you can set it up permanently by putting a line in
your .emacs file that looks like this:
(add-hook 'c-mode-hook
"(lambda ()
(c-set-style "stylename")))
Unfortunately, we’ll have to wait until Chapter 11 to understand exactly what this
code does. For now, make sure that you insert a single quote (') before the (1lambda in
the second line.

Each coding style contains subtleties that makes it nontrivial for Emacs to imple-
ment. Older versions of Emacs did this by defining several variables that controlled
various indentation levels; these were not easy to work with and, frankly, did not
really cover 100 percent of the nuances of each style. The current version of C mode,
in contrast, uses a considerably larger set of variables—too large, in fact, for anyone
other than hardy Emacs Lisp hackers to deal with.

Therefore, C mode keeps track of groups of these variables and their values under
named styles. One huge variable, called c-style-alist, contains all of the styles and
their associated information. You can customize this beast either by changing values
of variables within existing styles or by adding a style of your own. For further
details, look in the file cc-mode.el in your system’s Emacs Lisp directory (see
Chapter 11).

280 | Chapter9: Computer Language Support

Additional C and C++ Mode Features

C mode contains a number of other useful features, ranging from the generally use-
ful to the arcanely obscure. Perhaps the most interesting of these are two ways of
adding additional electric functionality to certain keystrokes, called auto-newline and
hungry-delete-key."

When auto-newline is enabled, it causes Emacs to add a newline character and
indent the new line properly whenever you type a semicolon (;), curly brace ({ or }),
or, at certain times, comma (,) or colon (:). These features can save you some time
and help you format your code in a consistent style.

Auto-newline is off by default. To turn it on, type C-c C-a for c-toggle-auto-state.
(Repeat the same command to turn it off again.) You will see the (C) in the mode line
change to (C/a) as an indication. As an example of how it works, try typing in the code
for our times() function. Type the first two lines up to the y on the second line:

int times (x, y)

int x, |
Now press the semicolon; notice that Emacs inserts a newline and brings you down
to the next line:

int times (x, vy)
int x, y;

Type the opening curly brace, and it happens again:

int times (x, y)
int x, y;

{
i
Of course, the number of spaces Emacs indents after you type the { depends on the
indentation style you are using.

The other optional electric feature, hungry-delete-key, is also off by default. To tog-
gle it on, type C-c C-d (for c-toggle-hungry-state). You will see the (C) on the mode
line change to (C/h), or if you have auto-newline turned on, from (C/a) to (C/ah).

Turning on hungry-delete-key empowers the Del key to delete all whitespace to the

left of the point. To go back to the previous example, assume you just typed the open

curly brace. Then, if you press Del, Emacs deletes everything back to the curly brace:
int times (x, y)

int x, y;

1 |

* These emulate electric-c-mode in the old Gosling Emacs.

Cand C++ Support | 281

You can toggle the states of both auto-newline and hungry-delete-key with the com-
mand C-c C-t (for c-toggle-auto-hungry-state).

If you want either of these features on by default when you invoke Emacs, you can
put lines like the following in your .emacs file:
(add-hook 'c-mode-hook
"(lambda ()
(c-toggle-auto-state)))
If you want to combine this customization with another C mode customization, such
as the indentation style in the previous example, you need to combine the lines of
Emacs Lisp code as follows:
(add-hook 'c-mode-hook
"(lambda ()
(c-set-style "stylename")
(c-toggle-auto-state)))
Again, we will see what this hook construct means in “Customizing Existing Modes”
in Chapter 11.

C mode also provides support for comments; earlier in the chapter, we saw exam-
ples of this support. There is, however, another feature. You can customize M-j (for
indent-new-comment-line) so that Emacs continues the same comment on the next
line instead of creating a new pair of delimiters. The variable comment-multi-line
controls this feature: if it is set to nil (the default), Emacs generates a new comment
on the next line, as in the example from earlier in the chapter:
result += y; /* add the multiplicand */
/* W
This outcome is the result of typing M-j after multiplicand, and it shows that the
cursor is positioned so that you can type the text of the second comment line. How-
ever, if you set comment-multi-line to t (or any value other than nil), you get this
outcome instead:
result += y; /* add the multiplicand
[+
The final feature we’ll cover is C-c C-e, (for c-macro-expand). Like the conditional
compilation motion commands (e.g., C-c C-u for c-up-conditional), c-macro-
expand helps you answer the often difficult question, “What code actually gets com-
piled?” when your source code contains a morass of preprocessor directives.

To use c-macro-expand, you must first define a region. Then, when you type C-c C-e,
it takes the code within the region, passes it through the actual C preprocessor, and
places the output in a window called *Macroexpansion*.

To see how this procedure works, let’s go back to the code example from earlier in
this chapter that contains C preprocessor directiv